Suppr超能文献

使用生物电描记法检测内脏器官病理状况的方法

Method for Detecting Pathology of Internal Organs Using Bioelectrography.

作者信息

Shichkina Yulia, Fatkieva Roza, Sychev Alexander, Kazak Anatoliy

机构信息

Department of Computer Science and Engineering, Saint Petersburg Electrotechnical University LETI, 197022 St. Petersburg, Russia.

Humanitarian Pedagogical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia.

出版信息

Diagnostics (Basel). 2024 May 9;14(10):991. doi: 10.3390/diagnostics14100991.

Abstract

This article considers the possibility of using the bioelectrography method to identify the pathology of internal organs. It is shown that with the currently existing methods, there is no possibility of the automatic detection of diseases or abnormalities in the functioning of a particular organ, or of the definition of combined pathology. It has been revealed that the use of various classifiers makes it possible to expand the field of pathology and choose the most optimal method for determining a particular disease. Based on this, a method for detecting the pathology of internal organs is developed, as well as a software package that allows the detection of diseases of the internal organs based on the bioelectrography results. Machine-learning models such as logistic regression, decision tree, random forest, xgboost, KNN, SVM and HyperTab are used for this purpose. HyperTab, logistic regression and xgboost turn out to be the best among them for this task, achieving a performance according to the f1-score metric in the order of 60-70%. The use of the developed method will, in practice, allow us to switch to combining various machine-learning models for the identification of certain diseases, as well as for the identification of combined pathology, which will help solve the problem of detecting pathology during screening studies and lead to a reduction in the burden on the staff of medical institutions.

摘要

本文探讨了使用生物电描记法识别内脏器官病理状况的可能性。结果表明,就目前现有的方法而言,无法自动检测特定器官功能中的疾病或异常情况,也无法确定合并病理状况。研究发现,使用各种分类器能够扩大病理领域,并选择最优化的方法来确定特定疾病。基于此,开发了一种检测内脏器官病理状况的方法以及一个软件包,该软件包可根据生物电描记结果检测内脏器官疾病。为此使用了逻辑回归、决策树、随机森林、极端梯度提升、K近邻、支持向量机和HyperTab等机器学习模型。结果表明,在这项任务中,HyperTab、逻辑回归和极端梯度提升表现最佳,根据F1分数指标,其性能达到60%-70%左右。在实际应用中,使用所开发的方法将使我们能够转而结合各种机器学习模型来识别某些疾病以及合并病理状况,这将有助于解决筛查研究中的病理检测问题,并减轻医疗机构工作人员的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3b/11119331/c144294a2fc1/diagnostics-14-00991-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验