DeepBreath——对来自5个国家的572名儿科门诊患者进行肺部听诊以自动检测呼吸病理状况

DeepBreath-automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries.

作者信息

Heitmann Julien, Glangetas Alban, Doenz Jonathan, Dervaux Juliane, Shama Deeksha M, Garcia Daniel Hinjos, Benissa Mohamed Rida, Cantais Aymeric, Perez Alexandre, Müller Daniel, Chavdarova Tatjana, Ruchonnet-Metrailler Isabelle, Siebert Johan N, Lacroix Laurence, Jaggi Martin, Gervaix Alain, Hartley Mary-Anne

机构信息

Intelligent Global Health Research Group, Machine Learning and Optimization Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Division of Pediatric Emergency Medicine, Department of Women, Child and Adolescent, Geneva University Hospitals (HUG), University of Geneva, Switzerland, Geneva, Switzerland.

出版信息

NPJ Digit Med. 2023 Jun 2;6(1):104. doi: 10.1038/s41746-023-00838-3.

Abstract

The interpretation of lung auscultation is highly subjective and relies on non-specific nomenclature. Computer-aided analysis has the potential to better standardize and automate evaluation. We used 35.9 hours of auscultation audio from 572 pediatric outpatients to develop DeepBreath : a deep learning model identifying the audible signatures of acute respiratory illness in children. It comprises a convolutional neural network followed by a logistic regression classifier, aggregating estimates on recordings from eight thoracic sites into a single prediction at the patient-level. Patients were either healthy controls (29%) or had one of three acute respiratory illnesses (71%) including pneumonia, wheezing disorders (bronchitis/asthma), and bronchiolitis). To ensure objective estimates on model generalisability, DeepBreath is trained on patients from two countries (Switzerland, Brazil), and results are reported on an internal 5-fold cross-validation as well as externally validated (extval) on three other countries (Senegal, Cameroon, Morocco). DeepBreath differentiated healthy and pathological breathing with an Area Under the Receiver-Operator Characteristic (AUROC) of 0.93 (standard deviation [SD] ± 0.01 on internal validation). Similarly promising results were obtained for pneumonia (AUROC 0.75 ± 0.10), wheezing disorders (AUROC 0.91 ± 0.03), and bronchiolitis (AUROC 0.94 ± 0.02). Extval AUROCs were 0.89, 0.74, 0.74 and 0.87 respectively. All either matched or were significant improvements on a clinical baseline model using age and respiratory rate. Temporal attention showed clear alignment between model prediction and independently annotated respiratory cycles, providing evidence that DeepBreath extracts physiologically meaningful representations. DeepBreath provides a framework for interpretable deep learning to identify the objective audio signatures of respiratory pathology.

摘要

肺部听诊的解读具有高度主观性,且依赖于非特异性的术语。计算机辅助分析有潜力使评估更好地标准化和自动化。我们使用了来自572名儿科门诊患者的35.9小时听诊音频来开发DeepBreath:一种识别儿童急性呼吸道疾病可听特征的深度学习模型。它由一个卷积神经网络和一个逻辑回归分类器组成,将来自八个胸部部位的录音估计汇总为患者水平的单一预测。患者要么是健康对照者(29%),要么患有三种急性呼吸道疾病之一(71%),包括肺炎、喘息性疾病(支气管炎/哮喘)和细支气管炎。为确保对模型泛化能力的客观估计,DeepBreath在来自两个国家(瑞士、巴西)的患者上进行训练,并在内部5折交叉验证以及在其他三个国家(塞内加尔、喀麦隆、摩洛哥)进行外部验证(extval)的基础上报告结果。DeepBreath区分健康呼吸和病理性呼吸的受试者工作特征曲线下面积(AUROC)为0.93(内部验证的标准差[SD]±0.01)。对于肺炎(AUROC 0.75±0.10)、喘息性疾病(AUROC 0.91±0.03)和细支气管炎(AUROC 0.94±0.02)也获得了类似的良好结果。外部验证的AUROC分别为0.89、0.74、0.74和0.87。所有结果与使用年龄和呼吸频率的临床基线模型相比,要么匹配,要么有显著改善。时间注意力显示模型预测与独立标注的呼吸周期之间有明显的一致性,这证明DeepBreath提取了具有生理意义的特征。DeepBreath提供了一个可解释的深度学习框架,以识别呼吸道病理学的客观音频特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c22/10238513/bd01c4d9004a/41746_2023_838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索