Suppr超能文献

使用深度学习的数字乳腺断层合成技术评估乳腺癌肿瘤边缘:初步评估

Evaluating the Margins of Breast Cancer Tumors by Using Digital Breast Tomosynthesis with Deep Learning: A Preliminary Assessment.

作者信息

Shia Wei-Chung, Kuo Yu-Hsun, Hsu Fang-Rong, Lin Joseph, Wu Wen-Pei, Wu Hwa-Koon, Yeh Wei-Cheng, Chen Dar-Ren

机构信息

Molecular Medicine Laboratory, Department of Research, Changhua Christian Hospital, Changhua 500, Taiwan.

School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuqing 350300, China.

出版信息

Diagnostics (Basel). 2024 May 16;14(10):1032. doi: 10.3390/diagnostics14101032.

Abstract

BACKGROUND

The assessment information of tumor margins is extremely important for the success of the breast cancer surgery and whether the patient undergoes a second operation. However, conducting surgical margin assessments is a time-consuming task that requires pathology-related skills and equipment, and often cannot be provided in a timely manner. To address this challenge, digital breast tomosynthesis technology was utilized to generate detailed cross-sectional images of the breast tissue and integrate deep learning algorithms for image segmentation, achieving an assessment of tumor margins during surgery.

METHODS

this study utilized post-operative tissue samples from 46 patients who underwent breast-conserving treatment, and generated image sets using digital breast tomosynthesis for the training and evaluation of deep learning models.

RESULTS

Deep learning algorithms effectively identifying the tumor area. They achieved a Mean Intersection over Union (MIoU) of 0.91, global accuracy of 99%, weighted IoU of 44%, precision of 98%, recall of 83%, F1 score of 89%, and dice coefficient of 93% on the training dataset; for the testing dataset, MIoU was at 83%, global accuracy at 97%, weighted IoU at 38%, precision at 87%, recall rate at 69%, F1 score at 76%, dice coefficient at 86%.

CONCLUSIONS

The initial evaluation suggests that the deep learning-based image segmentation method is highly accurate in measuring breast tumor margins. This helps provide information related to tumor margins during surgery, and by using different datasets, this research method can also be applied to the surgical margin assessment of various types of tumors.

摘要

背景

肿瘤切缘的评估信息对于乳腺癌手术的成功以及患者是否需要进行二次手术极为重要。然而,进行手术切缘评估是一项耗时的任务,需要病理学相关技能和设备,并且往往无法及时提供。为应对这一挑战,利用数字乳腺断层合成技术生成乳腺组织的详细横截面图像,并集成深度学习算法进行图像分割,以在手术期间实现对肿瘤切缘的评估。

方法

本研究使用了46例接受保乳治疗患者的术后组织样本,并利用数字乳腺断层合成生成图像集,用于深度学习模型的训练和评估。

结果

深度学习算法有效地识别了肿瘤区域。在训练数据集上,它们的平均交并比(MIoU)为0.91,全局准确率为99%,加权IoU为44%,精确率为98%,召回率为83%,F1分数为89%,骰子系数为93%;对于测试数据集,MIoU为83%,全局准确率为97%,加权IoU为38%,精确率为87%,召回率为69%,F1分数为76%,骰子系数为86%。

结论

初步评估表明,基于深度学习的图像分割方法在测量乳腺肿瘤切缘方面具有高度准确性。这有助于在手术期间提供与肿瘤切缘相关的信息,并且通过使用不同的数据集,该研究方法也可应用于各种类型肿瘤的手术切缘评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d19a/11119441/e39d3fc39590/diagnostics-14-01032-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验