Suppr超能文献

预测口咽癌单纯放化疗联合治疗的反应:纹理分析的作用

Predicting Response to Exclusive Combined Radio-Chemotherapy in Naso-Oropharyngeal Cancer: The Role of Texture Analysis.

作者信息

Bicci Eleonora, Calamandrei Leonardo, Di Finizio Antonio, Pietragalla Michele, Paolucci Sebastiano, Busoni Simone, Mungai Francesco, Nardi Cosimo, Bonasera Luigi, Miele Vittorio

机构信息

Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy.

Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy.

出版信息

Diagnostics (Basel). 2024 May 17;14(10):1036. doi: 10.3390/diagnostics14101036.

Abstract

The aim of this work is to identify MRI texture features able to predict the response to radio-chemotherapy (RT-CHT) in patients with naso-oropharyngeal carcinoma (NPC-OPC) before treatment in order to help clinical decision making. Textural features were derived from ADC maps and post-gadolinium T1-images on a single MRI machine for 37 patients with NPC-OPC. Patients were divided into two groups (responders/non-responders) according to results from MRI scans and 18F-FDG-PET/CT performed at follow-up 3-4 and 12 months after therapy and biopsy. Pre-RT-CHT lesions were segmented, and radiomic features were extracted. A non-parametric Mann-Whitney test was performed. A -value < 0.05 was considered significant. Receiver operating characteristic curves and area-under-the-curve values were generated; a 95% confidence interval (CI) was reported. A radiomic model was constructed using the LASSO algorithm. After feature selection on MRI T1 post-contrast sequences, six features were statistically significant: gldm_DependenceEntropy and DependenceNonUniformity, glrlm_RunEntropy and RunLengthNonUniformity, and glszm_SizeZoneNonUniformity and ZoneEntropy, with significant cut-off values between responder and non-responder group. With the LASSO algorithm, the radiomic model showed an AUC of 0.89 and 95% CI: 0.78-0.99. In ADC, five features were selected with an AUC of 0.84 and 95% CI: 0.68-1. Texture analysis on post-gadolinium T1-images and ADC maps could potentially predict response to therapy in patients with NPC-OPC who will undergo exclusive treatment with RT-CHT, being, therefore, a useful tool in therapeutical-clinical decision making.

摘要

这项工作的目的是识别在治疗前能够预测鼻咽癌(NPC-OPC)患者对放化疗(RT-CHT)反应的MRI纹理特征,以帮助临床决策。纹理特征来自37例NPC-OPC患者在同一台MRI机器上的ADC图和钆增强T1加权图像。根据治疗后3至4个月和12个月随访时的MRI扫描结果以及18F-FDG-PET/CT结果和活检,将患者分为两组(反应者/无反应者)。对RT-CHT治疗前的病变进行分割,并提取影像组学特征。进行非参数曼-惠特尼检验。P值<0.05被认为具有统计学意义。生成受试者工作特征曲线和曲线下面积值;报告95%置信区间(CI)。使用LASSO算法构建影像组学模型。在对MRI T1增强序列进行特征选择后,六个特征具有统计学意义:灰度共生矩阵(GLDM)的依赖熵和依赖非均匀性、灰度游程长度矩阵(GLRLM)的游程熵和游程长度非均匀性、灰度大小区域矩阵(GLSZM)的大小区域非均匀性和区域熵,反应者组和无反应者组之间具有显著的临界值。使用LASSO算法,影像组学模型的AUC为0.89,95%CI:0.78-0.99。在ADC图上,选择了五个特征,AUC为0.84,95%CI:0.68-1。钆增强T1加权图像和ADC图上的纹理分析可能预测将接受单纯RT-CHT治疗的NPC-OPC患者的治疗反应,因此是治疗临床决策中的一个有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2c2/11120575/5cb0faa999bf/diagnostics-14-01036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验