Xu Xinyi, Wang Zhaojin, Hou Jin, Zhang Tian, Zhao Xin, Di Siyi, Li Zijie
Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
Baoji Ultrafast Lasers and Advanced Materials Science and Technology Center, Baoji 721016, China.
Nanomaterials (Basel). 2024 May 17;14(10):871. doi: 10.3390/nano14100871.
In this study, we investigate micrometer-sized NaYF crystals double-doped with Yb/Er lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and ultralow temperatures. We explore the relationship between temperature and the upconversion luminescence (UCL) spectra in both frequency and time domains. Our findings highlight the strong dependence of these spectral characteristics of lanthanide-doped NaYF crystals on temperature. Furthermore, we introduce a dual-mode luminescence temperature measurement technique, leveraging the upconversion emission intensity ratio for both green and red emissions. This study also examines the correlation between temperature sensing, energy level disparities, and thermal coupling in Er ions across various temperature scales. Our research contributes to advancing the understanding and application of lanthanide-doped materials, setting a foundation for future innovations in temperature sensing across diverse fields.
在本研究中,我们研究了双掺杂镱/铒镧系离子的微米级NaYF晶体,其设计用于温度传感应用。与以往主要关注高温区域的研究不同,我们的研究涵盖了高温和超低温的全面范围。我们在频域和时域中探索温度与上转换发光(UCL)光谱之间的关系。我们的研究结果突出了镧系掺杂NaYF晶体的这些光谱特性对温度的强烈依赖性。此外,我们引入了一种双模发光温度测量技术,利用绿色和红色发射的上转换发射强度比。本研究还考察了不同温度尺度下铒离子的温度传感、能级差异和热耦合之间的相关性。我们的研究有助于增进对镧系掺杂材料的理解和应用,为未来跨领域温度传感的创新奠定基础。