Negi Preeti, Chadha Jatin, Harjai Kusum, Gondil Vijay Singh, Kumari Seema, Raj Khem
Department of Microbiology, Basic Medical Sciences Block 1, South Campus, Panjab University, Sector-25, Chandigarh 160014, India.
Department of Microbiology & Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
Biomedicines. 2024 May 16;12(5):1104. doi: 10.3390/biomedicines12051104.
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties by inflicting damage to the cell membrane, suppressing virulence, and inhibiting microbial biofilms. Developing alternative therapies for HAIs and addressing AMR can be made easier and more affordable by combining nanoparticles with medicinal plants harboring antimicrobial properties. Hence, this study was undertaken to develop a novel graphene-silver nanocomposite via green synthesis using plant extract as a reducing agent. The resulting nanocomposite comprised silver nanoparticles embedded in graphene sheets. The antibacterial and antifungal properties of graphene-silver nanocomposites were investigated against several nosocomial pathogens, namely, , , , , , and . The nanocomposite displayed broad-range antimicrobial potential against the test pathogens, with minimum inhibitory concentrations (MICs) ranging between 31.25 and 125.0 µg/mL, and biofilm inhibition up to 80-96%. Moreover, nanocomposite-functionalized urinary catheters demonstrated hemocompatibility towards sheep erythrocytes and imparted anti-fouling activity to the biomaterial, while also displaying biocompatibility towards HEK 293 cells. Collectively, this investigation highlights the possible application of green-synthesized GBNs as an effective alternative to conventional antibiotics for combating multidrug-resistant pathogens.
医院获得性感染(HAIs)对全球健康构成重大风险,影响着全球数百万人。由于广泛存在的抗菌药物耐药性(AMR),这些感染增加了发病率和死亡率。已知基于石墨烯的纳米颗粒(GBNs)通过破坏细胞膜、抑制毒力和抑制微生物生物膜而具有广泛的抗菌特性。通过将纳米颗粒与具有抗菌特性的药用植物相结合,可以使开发针对HAIs的替代疗法和应对AMR变得更容易且更经济实惠。因此,本研究采用植物提取物作为还原剂,通过绿色合成法开发一种新型的石墨烯-银纳米复合材料。所得的纳米复合材料由嵌入石墨烯片层中的银纳米颗粒组成。研究了石墨烯-银纳米复合材料对几种医院病原体,即 、 、 、 、 、 和 的抗菌和抗真菌特性。该纳米复合材料对测试病原体显示出广泛的抗菌潜力,最低抑菌浓度(MICs)在31.25至125.0 µg/mL之间,生物膜抑制率高达80-96%。此外,纳米复合材料功能化的导尿管对绵羊红细胞表现出血液相容性,并赋予生物材料抗污活性,同时对HEK 293细胞也显示出生物相容性。总体而言,这项研究突出了绿色合成的GBNs作为对抗多重耐药病原体的传统抗生素的有效替代品的可能应用。