Polivtseva Svetlana, Volobujeva Olga, Kuznietsov Ivan, Kaupmees Reelika, Danilson Mati, Krustok Jüri, Molaiyan Palanivel, Hu Tao, Lassi Ulla, Klopov Mihhail, van Gog Heleen, van Huis Marijn A, Kaur Harleen, Ivask Angela, Rosenberg Merilin, Gathergood Nicholas, Ni Chaoying, Grossberg-Kuusk Maarja
School of Engineering, Department of Materials and Environmental Technology, TalTech, Ehitajate tee 5, 19086 Tallinn, Estonia.
School of Science, Department of Cybernetics, TalTech, Ehitajate tee 5, 19086 Tallinn, Estonia.
ACS Appl Mater Interfaces. 2024 Nov 13;16(45):62871-62882. doi: 10.1021/acsami.4c11425. Epub 2024 Oct 30.
Defect engineering is an exciting tool for customizing semiconductors' structural and optoelectronic properties. Elaborating programmable methodologies to circumvent energy constraints in multievent inversions expands our understanding of the mechanisms governing the functionalization of nanomaterials. Herein, we introduce a novel strategy based on defect incorporation and solution rationalization, which triggers energetically unfavorable cation exchange reactions in extended solids. Using SbX + Ag (I) → Ag: SbX (X= S, Se) as a system to model, we demonstrate that incorporating chalcogen vacancies and AgV complex defects into initial thin films (TFs) is crucial for activating long-range solid-state ion diffusion. Additional regulation of the Lewis acidity of auxiliary chemicals provides an exceptional conversion yield of the Ag precursor into a solid-state product up to 90%, simultaneously transforming upper matrix layers into AgSbX. The proposed strategy enables tailoring radiative recombination processes, offers efficiency to invert TFs at moderate temperatures quickly, and yields structures of large areas with substantial antibacterial activity in visible light for a particular inversion system. Similar customization can be applied to most sulfides/selenides with controlled reaction yields.
缺陷工程是一种用于定制半导体结构和光电特性的令人兴奋的工具。阐述可编程方法以规避多事件反演中的能量限制,拓展了我们对纳米材料功能化控制机制的理解。在此,我们介绍一种基于缺陷引入和溶液合理化的新策略,该策略能在扩展固体中引发能量上不利的阳离子交换反应。以SbX + Ag (I) → Ag: SbX (X = S, Se) 作为模拟体系,我们证明在初始薄膜(TFs)中引入硫族空位和AgV复合缺陷对于激活长程固态离子扩散至关重要。对辅助化学物质的路易斯酸度进行额外调控,可使Ag前驱体转化为固态产物的转化率高达90%,同时将上层基质层转化为AgSbX。所提出的策略能够定制辐射复合过程,在中等温度下快速实现TFs的高效反演,并为特定反演体系生成在可见光下具有显著抗菌活性的大面积结构。类似的定制可应用于大多数具有可控反应产率的硫化物/硒化物。