Maršík Dominik, Thoresen Petter Paulsen, Maťátková Olga, Masák Jan, Sialini Pavel, Rova Ulrika, Tsikourkitoudi Vasiliki, Christakopoulos Paul, Matsakas Leonidas, Jarošová Kolouchová Irena
Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources, Luleå University of Technology, 971 87 Luleå, Sweden.
Molecules. 2024 May 16;29(10):2360. doi: 10.3390/molecules29102360.
Metal nanoparticle synthesis via environmentally friendly methods is gaining interest for their potential advantages over conventional physico-chemical approaches. Herein, we propose a robust green synthesis route for lignin-modified silver nanoparticles, utilizing the recovery of lignin as a renewable raw material and exploring its application in valuable areas. Through a systematic approach combining UV-Vis spectroscopy with AAS and DLS, we identified repeatable and scalable reaction conditions in an aqueous solution at pH 11 for homogeneous silver nanoparticles with high uniformity. The TEM median sizes ranged from 12 to 15 nm with circularity between 0.985 and 0.993. The silver nanoparticles yield exceeded 0.010 mol L, comparable with traditional physico-chemical methods, with a minimal loss of silver precursor ranging between 0.5 and 3.9%. Characterization by XRD and XPS revealed the presence of Ag-O bonding involving lignin functional groups on the pure face-centered cubic structure of metallic silver. Moreover, the lignin-modified silver nanoparticles generated a localized thermal effect upon near-infrared laser irradiation (808 nm), potentially allowing for targeted applications in the biomedical field. Our study showcases the potential of lignin as a renewable reducing and capping agent for silver nanoparticle synthesis, addressing some shortcomings of green synthesis approaches and contributing to the development of suitable nanomaterials.
通过环境友好型方法合成金属纳米颗粒因其相对于传统物理化学方法的潜在优势而受到关注。在此,我们提出了一种用于木质素修饰银纳米颗粒的稳健绿色合成路线,利用木质素的回收作为可再生原料,并探索其在有价值领域的应用。通过将紫外可见光谱与原子吸收光谱和动态光散射相结合的系统方法,我们确定了在pH值为11的水溶液中,对于具有高均匀性的均匀银纳米颗粒,可重复且可扩展的反应条件。透射电子显微镜的中位尺寸范围为12至15纳米,圆度在0.985至0.993之间。银纳米颗粒的产率超过0.010 mol/L,与传统物理化学方法相当,银前驱体的损失最小,在0.5%至3.9%之间。X射线衍射和X射线光电子能谱表征显示,在金属银的纯面心立方结构上存在涉及木质素官能团的Ag-O键。此外,木质素修饰的银纳米颗粒在近红外激光照射(808纳米)下产生局部热效应,这可能使其在生物医学领域具有靶向应用潜力。我们的研究展示了木质素作为银纳米颗粒合成的可再生还原剂和封端剂的潜力,解决了绿色合成方法的一些缺点,并有助于开发合适的纳米材料。