文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于电容器技术的红细胞膜力学特性研究

Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique.

作者信息

Dorta Doriana, Plazaola Carlos, Carrasco Jafeth, Alves-Rosa Maria F, Coronado Lorena M, Correa Ricardo, Zambrano Maytee, Gutiérrez-Medina Braulio, Sarmiento-Gómez Erick, Spadafora Carmenza, Gonzalez Guadalupe

机构信息

Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City 06001-01103, Panama.

Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama City 1843-01103, Panama.

出版信息

Micromachines (Basel). 2024 Apr 28;15(5):590. doi: 10.3390/mi15050590.


DOI:10.3390/mi15050590
PMID:38793163
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11122917/
Abstract

Pathological processes often change the mechanical properties of cells. Increased rigidity could be a marker of cellular malfunction. Erythrocytes are a type of cell that deforms to squeeze through tiny capillaries; changes in their rigidity can dramatically affect their functionality. Furthermore, differences in the homeostatic elasticity of the cell can be used as a tool for diagnosis and even for choosing the adequate treatment for some illnesses. More accurate types of equipment needed to study biomechanical phenomena at the single-cell level are very costly and thus out of reach for many laboratories around the world. This study presents a simple and low-cost technique to study the rigidity of red blood cells (RBCs) through the application of electric fields in a hand-made microfluidic chamber that uses a capacitor principle. As RBCs are deformed with the application of voltage, cells are observed under a light microscope. From mechanical force vs. deformation data, the elastic constant of the cells is determined. The results obtained with the capacitor-based method were compared with those obtained using optical tweezers, finding good agreement. In addition, -infected erythrocytes were tested with the electric field applicator. Our technique provides a simple means of testing the mechanical properties of individual cells.

摘要

病理过程常常会改变细胞的力学特性。硬度增加可能是细胞功能异常的一个标志。红细胞是一种会发生变形以挤过微小毛细血管的细胞类型;其硬度的变化会极大地影响其功能。此外,细胞稳态弹性的差异可作为一种诊断工具,甚至可用于为某些疾病选择合适的治疗方法。在单细胞水平研究生物力学现象所需的更精确类型的设备非常昂贵,因此世界上许多实验室都无法获得。本研究提出了一种简单且低成本的技术,通过在基于电容器原理的手工制作的微流控腔室中施加电场来研究红细胞(RBC)的硬度。随着电压的施加红细胞发生变形,在光学显微镜下观察细胞。根据机械力与变形数据,确定细胞的弹性常数。将基于电容器的方法所获得的结果与使用光镊获得的结果进行比较,发现二者吻合度良好。此外,用该电场施加器对受感染的红细胞进行了测试。我们的技术提供了一种测试单个细胞力学特性的简单方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/72c39adba3cd/micromachines-15-00590-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/054c01fea53e/micromachines-15-00590-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/7ca1c2b379c6/micromachines-15-00590-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/94db919b716d/micromachines-15-00590-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/32a7ef7008ad/micromachines-15-00590-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/2154aa6d064e/micromachines-15-00590-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/9447d1368506/micromachines-15-00590-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/8edeb60ae35c/micromachines-15-00590-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/5e901c00ee76/micromachines-15-00590-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/72c39adba3cd/micromachines-15-00590-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/054c01fea53e/micromachines-15-00590-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/7ca1c2b379c6/micromachines-15-00590-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/94db919b716d/micromachines-15-00590-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/32a7ef7008ad/micromachines-15-00590-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/2154aa6d064e/micromachines-15-00590-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/9447d1368506/micromachines-15-00590-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/8edeb60ae35c/micromachines-15-00590-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/5e901c00ee76/micromachines-15-00590-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48e/11122917/72c39adba3cd/micromachines-15-00590-g009.jpg

相似文献

[1]
Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique.

Micromachines (Basel). 2024-4-28

[2]
Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.

Acta Biomater. 2017-7-15

[3]
Biolens behavior of RBCs under optically-induced mechanical stress.

Cytometry A. 2017-5

[4]
Nanomechanical characterization of red blood cells using optical tweezers.

J Mater Sci Mater Med. 2008-4

[5]
SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.

Biomed Eng Online. 2016-12-28

[6]
Mechanical modeling of red blood cells during optical stretching.

J Biomech Eng. 2010-4

[7]
Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.

Exp Hematol. 2013-3-26

[8]
Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties.

Phys Rev E. 2020-6

[9]
Mechanical properties of the human red blood cell membrane at -15 degrees C.

Cryobiology. 2009-8

[10]
Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.

IEEE Trans Biomed Eng. 2010-2-18

本文引用的文献

[1]
Invasion and Erythrocyte Aging.

Cells. 2024-2-12

[2]
Comparative spatial proteomics of Plasmodium-infected erythrocytes.

Cell Rep. 2023-11-28

[3]
Acoustic tweezers for high-throughput single-cell analysis.

Nat Protoc. 2023-8

[4]
Application of optical tweezers in cardiovascular research: More than just a measuring tool.

Front Bioeng Biotechnol. 2022-9-6

[5]
Acoustic Force Elastography Microscopy.

IEEE Trans Biomed Eng. 2023-3

[6]
Imaging of Extracellular Vesicles Derived from Plasmodium falciparum-Infected Red Blood Cells Using Atomic Force Microscopy.

Methods Mol Biol. 2022

[7]
Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings.

Front Cell Infect Microbiol. 2022

[8]
Lateral Deformation of Human Red Blood Cells by Optical Tweezers.

Micromachines (Basel). 2021-8-27

[9]
Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue.

Biomed Opt Express. 2019-5-1

[10]
Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization.

Sensors (Basel). 2019-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索