Suppr超能文献

用于生物支架的聚己内酯(PCL)与二甲基亚砜(DMSO)复合材料的流变学特性及3D打印行为

Rheological Properties and 3D Printing Behavior of PCL and DMSO Composites for Bio-Scaffold.

作者信息

Jang Jae-Won, Min Kyung-Eun, Kim Cheolhee, Wern Chien, Yi Sung

机构信息

Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA.

Welding and Joining R&D Group, Korea Institute of Industrial Technology, 156, Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea.

出版信息

Materials (Basel). 2024 May 20;17(10):2459. doi: 10.3390/ma17102459.

Abstract

The significance of rheology in the context of bio three-dimensional (3D) printing lies in its impact on the printing behavior, which shapes material flow and the layer-by-layer stacking process. The objective of this study is to evaluate the rheological and printing behaviors of polycaprolactone (PCL) and dimethyl sulfone (DMSO) composites. The rheological properties were examined using a rotational rheometer, employing a frequency sweep test. Simultaneously, the printing behavior was investigated using a material extrusion 3D printer, encompassing varying printing temperatures and pressures. Across the temperature range of 120-140 °C, both PCL and PCL/DMSO composites demonstrated liquid-like behavior, with a higher loss modulus than storage modulus. This behavior exhibited shear-thinning characteristics. The addition of DMSO 10, 20, and 30 wt% into the PCL matrix reduced a zero-shear viscosity of 33, 46, and 74% compared to PCL, respectively. The materials exhibited extrusion velocities spanning from 0.0850 to 6.58 mm/s, with velocity being governed by the reciprocal of viscosity. A significant alteration in viscosity by temperature change directly led to a pronounced fluctuation in extrusion velocity. Extrusion velocities below 0.21 mm/s led to the production of unstable printed lines. The presence of distinct viscosities altered extrusion velocity, flow rate, and strut diameter. This phenomenon allowed the categorization of pore shape into three zones: irregular, normal, and no-pore zones. It underscored the importance of comprehending the rheological aspects of biomaterials in enhancing the overall quality of bio-scaffolds during the 3D printing process.

摘要

流变学在生物三维(3D)打印中的意义在于其对打印行为的影响,这种影响塑造了材料流动和逐层堆叠过程。本研究的目的是评估聚己内酯(PCL)和二甲基亚砜(DMSO)复合材料的流变学和打印行为。使用旋转流变仪通过频率扫描测试来检测流变性能。同时,使用材料挤出3D打印机研究打印行为,包括不同的打印温度和压力。在120 - 140°C的温度范围内,PCL和PCL/DMSO复合材料均表现出类似液体的行为,损耗模量高于储能模量。这种行为表现出剪切变稀特性。与PCL相比,向PCL基体中添加10%、20%和30%重量的DMSO分别使零剪切粘度降低了33%、46%和74%。材料的挤出速度范围为0.0850至6.58 mm/s,速度受粘度倒数的控制。温度变化导致的粘度显著变化直接导致挤出速度的明显波动。低于0.21 mm/s的挤出速度会导致产生不稳定的打印线条。不同的粘度会改变挤出速度、流速和支柱直径。这种现象使得孔隙形状可分为三个区域:不规则、正常和无孔隙区域。这强调了在3D打印过程中理解生物材料流变学方面对于提高生物支架整体质量的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2076/11123199/5c897d1603dd/materials-17-02459-g001.jpg

相似文献

1
Rheological Properties and 3D Printing Behavior of PCL and DMSO Composites for Bio-Scaffold.
Materials (Basel). 2024 May 20;17(10):2459. doi: 10.3390/ma17102459.
2
PCL and DMSO Composites for Bio-Scaffold Materials.
Materials (Basel). 2023 Mar 21;16(6):2481. doi: 10.3390/ma16062481.
3
Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
Biomater Adv. 2022 Mar;134:112540. doi: 10.1016/j.msec.2021.112540. Epub 2021 Nov 9.
4
Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
Food Res Int. 2021 Mar;141:110111. doi: 10.1016/j.foodres.2021.110111. Epub 2021 Jan 12.
5
6
3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111433. doi: 10.1016/j.msec.2020.111433. Epub 2020 Aug 25.
8
Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):279-291. doi: 10.1089/ten.TEA.2019.0237. Epub 2020 Feb 27.
9
A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
Biomed Mater. 2020 Nov 27;16(1):015003. doi: 10.1088/1748-605X/abb2d8.

引用本文的文献

2
Osteogenic Potential of 3D-Printed Porous Poly(lactide--trimethylene carbonate) Scaffolds Coated with Mg-Doped Hydroxyapatite.
ACS Appl Mater Interfaces. 2025 May 28;17(21):31411-31433. doi: 10.1021/acsami.5c03945. Epub 2025 May 15.
4
Hydrophilic Components as Key Active Ingredients in Adipose-Derived Matrix Bioscaffolds for Inducing Fat Regeneration.
Adv Healthc Mater. 2024 Dec;13(31):e2402331. doi: 10.1002/adhm.202402331. Epub 2024 Aug 27.

本文引用的文献

1
PCL and DMSO Composites for Bio-Scaffold Materials.
Materials (Basel). 2023 Mar 21;16(6):2481. doi: 10.3390/ma16062481.
4
Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review.
J Biomed Mater Res B Appl Biomater. 2022 Jun;110(6):1479-1503. doi: 10.1002/jbm.b.34997. Epub 2021 Dec 17.
9
3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111433. doi: 10.1016/j.msec.2020.111433. Epub 2020 Aug 25.
10
Bio-Based Polymers for 3D Printing of Bioscaffolds.
Polym Rev (Phila Pa). 2018;58(4):668-687. doi: 10.1080/15583724.2018.1484761. Epub 2018 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验