Jang Jae-Won, Min Kyung-Eun, Park Jun-Hee, Kim Cheolhee, Yi Sung
Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA.
Materials (Basel). 2025 May 20;18(10):2380. doi: 10.3390/ma18102380.
The field of tissue engineering increasingly demands accurate predictive models to optimize the 3D printing process of bio-scaffolds. This study presents a unified numerical model that predicts extrusion velocity and strut diameter based on printing conditions and the material properties of polycaprolactone (PCL) and dimethyl sulfone (DMSO) composites. The extrusion velocity was simulated using Navier-Stokes equations, while the strut diameter was calculated via a surface energy model. For PCL, the extrusion velocity showed a temperature coefficient of 23.3%/°C and a pressure coefficient of 19.1% per 100 kPa; the strut diameter exhibited a temperature coefficient of 21.6%/°C and a pressure coefficient of 16.6% per 100 kPa. When blended with DMSO, the lower viscosity and higher surface energy resulted in increased extrusion velocity and strut diameter. The proposed model achieved a high predictive accuracy, with determination coefficient (R²) values exceeding 0.95. These results demonstrate the model's potential to optimize 3D printing parameters, guide biomaterial selection, and predict pore characteristics, ultimately supporting the rational design of tissue engineering scaffolds.
组织工程领域对精确的预测模型的需求日益增加,以优化生物支架的3D打印过程。本研究提出了一个统一的数值模型,该模型基于打印条件以及聚己内酯(PCL)和二甲基亚砜(DMSO)复合材料的材料特性来预测挤出速度和支柱直径。使用Navier-Stokes方程模拟挤出速度,而通过表面能模型计算支柱直径。对于PCL,挤出速度的温度系数为23.3%/°C,压力系数为每100 kPa 19.1%;支柱直径的温度系数为21.6%/°C,压力系数为每100 kPa 16.6%。当与DMSO混合时,较低的粘度和较高的表面能导致挤出速度和支柱直径增加。所提出的模型具有较高的预测精度,决定系数(R²)值超过0.95。这些结果证明了该模型在优化3D打印参数、指导生物材料选择和预测孔隙特征方面的潜力,最终支持组织工程支架的合理设计。