Suppr超能文献

ISLS:一种光照感知酱料包泄漏分割方法。

ISLS: An Illumination-Aware Sauce-Packet Leakage Segmentation Method.

作者信息

You Shuai, Lin Shijun, Feng Yujian, Fan Jianhua, Yan Zhenzheng, Liu Shangdong, Ji Yimu

机构信息

School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

出版信息

Sensors (Basel). 2024 May 18;24(10):3216. doi: 10.3390/s24103216.

Abstract

The segmentation of abnormal regions is vital in smart manufacturing. The blurring sauce-packet leakage segmentation task (BSLST) is designed to distinguish the sauce packet and the leakage's foreground and background at the pixel level. However, the existing segmentation system for detecting sauce-packet leakage on intelligent sensors encounters an issue of imaging blurring caused by uneven illumination. This issue adversely affects segmentation performance, thereby hindering the measurements of leakage area and impeding the automated sauce-packet production. To alleviate this issue, we propose the two-stage illumination-aware sauce-packet leakage segmentation (ISLS) method for intelligent sensors. The ISLS comprises two main stages: illumination-aware region enhancement and leakage region segmentation. In the first stage, YOLO-Fastestv2 is employed to capture the Region of Interest (ROI), which reduces redundancy computations. Additionally, we propose image enhancement to relieve the impact of uneven illumination, enhancing the texture details of the ROI. In the second stage, we propose a novel feature extraction network. Specifically, we propose the multi-scale feature fusion module (MFFM) and the Sequential Self-Attention Mechanism (SSAM) to capture discriminative representations of leakage. The multi-level features are fused by the MFFM with a small number of parameters, which capture leakage semantics at different scales. The SSAM realizes the enhancement of valid features and the suppression of invalid features by the adaptive weighting of spatial and channel dimensions. Furthermore, we generate a self-built dataset of sauce packets, including 606 images with various leakage areas. Comprehensive experiments demonstrate that our ISLS method shows better results than several state-of-the-art methods, with additional performance analyses deployed on intelligent sensors to affirm the effectiveness of our proposed method.

摘要

异常区域的分割在智能制造中至关重要。酱料包泄漏分割任务(BSLST)旨在在像素级别区分酱料包以及泄漏的前景和背景。然而,现有的用于智能传感器检测酱料包泄漏的分割系统存在因光照不均匀导致成像模糊的问题。这个问题对分割性能产生不利影响,从而阻碍了泄漏面积的测量,并妨碍了酱料包的自动化生产。为了缓解这个问题,我们提出了用于智能传感器的两阶段光照感知酱料包泄漏分割(ISLS)方法。ISLS包括两个主要阶段:光照感知区域增强和泄漏区域分割。在第一阶段,采用YOLO-Fastestv2来捕获感兴趣区域(ROI),这减少了冗余计算。此外,我们提出图像增强来减轻光照不均匀的影响,增强ROI的纹理细节。在第二阶段,我们提出了一种新颖的特征提取网络。具体来说,我们提出了多尺度特征融合模块(MFFM)和顺序自注意力机制(SSAM)来捕获泄漏的判别性表示。多级特征通过MFFM以少量参数进行融合,从而在不同尺度上捕获泄漏语义。SSAM通过空间和通道维度的自适应加权实现有效特征的增强和无效特征的抑制。此外,我们生成了一个自制的酱料包数据集,包括606张具有不同泄漏面积的图像。综合实验表明,我们的ISLS方法比几种现有方法显示出更好的结果,并且在智能传感器上进行了额外的性能分析,以证实我们所提出方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f185/11126124/1653b1fcd4a2/sensors-24-03216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验