Suppr超能文献

MRD-YOLO:一种用于复杂道路场景的多光谱目标检测算法。

MRD-YOLO: A Multispectral Object Detection Algorithm for Complex Road Scenes.

作者信息

Sun Chaoyue, Chen Yajun, Qiu Xiaoyang, Li Rongzhen, You Longxiang

机构信息

School of Electronic Information Engineering, China West Normal University, Nanchong 637009, China.

出版信息

Sensors (Basel). 2024 May 18;24(10):3222. doi: 10.3390/s24103222.

Abstract

Object detection is one of the core technologies for autonomous driving. Current road object detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy, night-time, and foggy scenes. Multispectral object detection based on the fusion of RGB and infrared images can effectively address the challenges of complex and changing road scenes, improving the detection performance of current algorithms in complex scenarios. However, previous multispectral detection algorithms suffer from issues such as poor fusion of dual-mode information, poor detection performance for multi-scale objects, and inadequate utilization of semantic information. To address these challenges and enhance the detection performance in complex road scenes, this paper proposes a novel multispectral object detection algorithm called MRD-YOLO. In MRD-YOLO, we utilize interaction-based feature extraction to effectively fuse information and introduce the BIC-Fusion module with attention guidance to fuse different modal information. We also incorporate the SAConv module to improve the model's detection performance for multi-scale objects and utilize the AIFI structure to enhance the utilization of semantic information. Finally, we conduct experiments on two major public datasets, FLIR_Aligned and MFD. The experimental results demonstrate that compared to other algorithms, the proposed algorithm achieves superior detection performance in complex road scenes.

摘要

目标检测是自动驾驶的核心技术之一。当前的道路目标检测主要依赖可见光,在雨天、夜间和雾天场景中容易出现漏检和误报。基于RGB和红外图像融合的多光谱目标检测可以有效应对复杂多变的道路场景挑战,提高当前算法在复杂场景下的检测性能。然而,以往的多光谱检测算法存在双模态信息融合不佳、对多尺度目标检测性能差以及语义信息利用不足等问题。为了应对这些挑战并提高在复杂道路场景中的检测性能,本文提出了一种名为MRD-YOLO的新型多光谱目标检测算法。在MRD-YOLO中,我们利用基于交互的特征提取来有效融合信息,并引入具有注意力引导的BIC-Fusion模块来融合不同模态信息。我们还纳入了SAConv模块以提高模型对多尺度目标的检测性能,并利用AIFI结构来增强语义信息的利用。最后,我们在两个主要的公共数据集FLIR_Aligned和MFD上进行了实验。实验结果表明,与其他算法相比,所提出的算法在复杂道路场景中实现了卓越的检测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验