Suppr超能文献

一种使用高清3D距离数据的自动驾驶车辆行人检测机器学习方法。

A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.

作者信息

Navarro Pedro J, Fernández Carlos, Borraz Raúl, Alonso Diego

机构信息

División de Sistemas en Ingeniería Electrónica (DSIE), Universidad Politécnica de Cartagena, Campus Muralla del Mar, s/n, Cartagena 30202, Spain.

出版信息

Sensors (Basel). 2016 Dec 23;17(1):18. doi: 10.3390/s17010018.

Abstract

This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).

摘要

本文介绍了一种基于传感器的自动化系统,用于在自动驾驶车辆应用中检测行人。尽管车辆配备了一系列广泛的传感器,但本文重点关注由Velodyne HDL - 64E激光雷达传感器生成的信息处理。通过选择立方体形状,并对立方体中包含的点在XY、XZ和YZ平面的投影应用机器视觉和机器学习算法,对传感器生成的点云(每旋转超过100万个点)进行处理以检测行人。这项工作对三种不同的机器学习算法进行了详尽的性能分析:k近邻算法(kNN)、朴素贝叶斯分类器(NBC)和支持向量机(SVM)。这些算法已使用1931个样本进行训练。该方法在包含16名行人及469个非行人样本的真实交通场景中进行测量的最终性能显示,其灵敏度为81.2%,准确率为96.2%,特异性为96.8%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e26/5298591/b64ad214fd8e/sensors-17-00018-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验