Navarro Pedro J, Fernández Carlos, Borraz Raúl, Alonso Diego
División de Sistemas en Ingeniería Electrónica (DSIE), Universidad Politécnica de Cartagena, Campus Muralla del Mar, s/n, Cartagena 30202, Spain.
Sensors (Basel). 2016 Dec 23;17(1):18. doi: 10.3390/s17010018.
This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).
本文介绍了一种基于传感器的自动化系统,用于在自动驾驶车辆应用中检测行人。尽管车辆配备了一系列广泛的传感器,但本文重点关注由Velodyne HDL - 64E激光雷达传感器生成的信息处理。通过选择立方体形状,并对立方体中包含的点在XY、XZ和YZ平面的投影应用机器视觉和机器学习算法,对传感器生成的点云(每旋转超过100万个点)进行处理以检测行人。这项工作对三种不同的机器学习算法进行了详尽的性能分析:k近邻算法(kNN)、朴素贝叶斯分类器(NBC)和支持向量机(SVM)。这些算法已使用1931个样本进行训练。该方法在包含16名行人及469个非行人样本的真实交通场景中进行测量的最终性能显示,其灵敏度为81.2%,准确率为96.2%,特异性为96.8%。