Suppr超能文献

基于 MRI 鞍区影像的影像组学模型有望鉴别生长激素缺乏症与特发性矮小症

A Radiomics-Based Model with the Potential to Differentiate Growth Hormone Deficiency and Idiopathic Short Stature on Sella MRI.

机构信息

Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.

Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea.

出版信息

Yonsei Med J. 2022 Sep;63(9):856-863. doi: 10.3349/ymj.2022.63.9.856.

Abstract

PURPOSE

We hypothesized that a radiomics approach could be employed to classify children with growth hormone deficiency (GHD) and idiopathic short stature (ISS) on sella magnetic resonance imaging (MRI). Accordingly, we aimed to develop a radiomics prediction model for differentiating GHD from ISS and to evaluate the diagnostic performance thereof.

MATERIALS AND METHODS

Short stature pediatric patients diagnosed with GHD or ISS from March 2011 to July 2020 at our institution were recruited. We enrolled 312 patients (GHD 210, ISS 102) with normal sella MRI and temporally split them into training and test sets (7:3). Pituitary glands were semi-automatically segmented, and 110 radiomic features were extracted from the coronal T2-weighted images. Feature selection and model development were conducted by applying mutual information (MI) and a light gradient boosting machine, respectively. After training, the model's performance was validated in the test set. We calculated mean absolute Shapley values for each of the selected input features using the Shapley additive explanations (SHAP) algorithm. Volumetric comparison was performed for GHD and ISS groups.

RESULTS

Ten radiomic features were selected by MI. The receiver operating characteristics curve of the developed model in the test set was 0.705, with an accuracy of 70.6%. When analyzing SHAP plots, root mean squared values had the highest impact in the model, followed by various texture features. In volumetric analysis, sagittal height showed a significant difference between GHD and ISS groups.

CONCLUSION

Radiomic analysis of sella MRI may be able to differentiate between GHD and ISS in clinical practice for short-statured children.

摘要

目的

我们假设可以采用放射组学方法对生长激素缺乏症(GHD)和特发性身材矮小(ISS)患儿的鞍区磁共振成像(MRI)进行分类。因此,我们旨在开发一种用于区分 GHD 和 ISS 的放射组学预测模型,并评估其诊断性能。

材料与方法

本研究招募了 2011 年 3 月至 2020 年 7 月在我院诊断为 GHD 或 ISS 的身材矮小儿科患者。我们纳入了 312 例 MRI 正常的鞍区患者(GHD 210 例,ISS 102 例),并将其按时间分为训练集和测试集(7:3)。使用半自动方法对垂体进行分割,并从冠状 T2 加权图像中提取 110 个放射组学特征。使用互信息(MI)和轻梯度提升机分别进行特征选择和模型开发。训练后,在测试集中验证模型的性能。我们使用 Shapley 加法解释(SHAP)算法计算每个选定输入特征的平均绝对 Shapley 值。对 GHD 和 ISS 组进行容积比较。

结果

MI 选择了 10 个放射组学特征。在测试集中,所开发模型的受试者工作特征曲线为 0.705,准确率为 70.6%。当分析 SHAP 图时,均方根值在模型中的影响最大,其次是各种纹理特征。在容积分析中,GHD 和 ISS 组的矢状高度存在显著差异。

结论

对鞍区 MRI 的放射组学分析可能有助于在临床实践中区分 GHD 和 ISS 的矮小儿童。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f48/9424774/ec1bea75e477/ymj-63-856-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验