Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, 250033, Shandong, China.
Department of Nephrology, Shenzhen Third People's Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong, China.
Sci Rep. 2024 May 25;14(1):11987. doi: 10.1038/s41598-024-62887-2.
Unenhanced CT scans exhibit high specificity in detecting moderate-to-severe hepatic steatosis. Even though many CTs are scanned from health screening and various diagnostic contexts, their potential for hepatic steatosis detection has largely remained unexplored. The accuracy of previous methodologies has been limited by the inclusion of non-parenchymal liver regions. To overcome this limitation, we present a novel deep-learning (DL) based method tailored for the automatic selection of parenchymal portions in CT images. This innovative method automatically delineates circular regions for effectively detecting hepatic steatosis. We use 1,014 multinational CT images to develop a DL model for segmenting liver and selecting the parenchymal regions. The results demonstrate outstanding performance in both tasks. By excluding non-parenchymal portions, our DL-based method surpasses previous limitations, achieving radiologist-level accuracy in liver attenuation measurements and hepatic steatosis detection. To ensure the reproducibility, we have openly shared 1014 annotated CT images and the DL system codes. Our novel research contributes to the refinement the automated detection methodologies of hepatic steatosis on CT images, enhancing the accuracy and efficiency of healthcare screening processes.
未增强 CT 扫描在检测中重度肝脂肪变性方面具有很高的特异性。尽管许多 CT 扫描是从健康筛查和各种诊断情况中进行的,但它们在检测肝脂肪变性方面的潜力在很大程度上尚未得到探索。以前的方法的准确性受到包括非实质肝区的限制。为了克服这一限制,我们提出了一种基于深度学习(DL)的新方法,专门用于自动选择 CT 图像中的实质部分。这种创新方法自动描绘圆形区域,以有效检测肝脂肪变性。我们使用 1014 张多国家 CT 图像来开发用于分割肝脏和选择实质区域的 DL 模型。结果表明,该模型在这两个任务中均表现出卓越的性能。通过排除非实质部分,我们基于 DL 的方法克服了以前的限制,在肝脏衰减测量和肝脂肪变性检测方面达到了放射科医生级别的准确性。为了确保可重复性,我们公开共享了 1014 张标注 CT 图像和 DL 系统代码。我们的新研究有助于改进 CT 图像上肝脂肪变性的自动检测方法,提高医疗保健筛查过程的准确性和效率。