Ye Zezhong, Qian Jack M, Hosny Ahmed, Zeleznik Roman, Plana Deborah, Likitlersuang Jirapat, Zhang Zhongyi, Mak Raymond H, Aerts Hugo J W L, Kann Benjamin H
Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Harvard Institutes of Medicine, Boston, Mass (Z.Y., J.M.Q., A.H., R.Z., D.P., J.L., Z.Z., R.H.M., H.J.W.L.A., B.H.K.); Departments of Radiation Oncology (Z.Y., J.M.Q., A.H., R.Z., J.L., Z.Z., R.H.M., H.J.W.L.A., B.H.K.) and Radiology (H.J.W.L.A.), Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Harvard-MIT Division of Health Sciences & Technology, Cambridge, Mass (D.P.); and Department of Radiology and Nuclear Medicine, School for Cardiovascular Diseases (CARIM) & School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands (H.J.W.L.A.).
Radiol Artif Intell. 2022 May 4;4(3):e210285. doi: 10.1148/ryai.210285. eCollection 2022 May.
Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging-based artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly documented in imaging metadata, necessitating impractical manual annotation by clinician experts. Authors developed a convolutional neural network (CNN)-based deep learning platform to identify intravenous contrast enhancement on CT scans. For model development and validation, authors used six independent datasets of head and neck (HN) and chest CT scans, totaling 133 480 axial two-dimensional sections from 1979 scans, which were manually annotated by clinical experts. Five CNN models were trained first on HN scans for contrast enhancement detection. Model performances were evaluated at the patient level on a holdout set and external test set. Models were then fine-tuned on chest CT data and externally validated. This study found that Digital Imaging and Communications in Medicine metadata tags for intravenous contrast material were missing or erroneous for 1496 scans (75.6%). An EfficientNetB4-based model showed the best performance, with areas under the curve (AUCs) of 0.996 and 1.0 in HN holdout ( = 216) and external ( = 595) sets, respectively, and AUCs of 1.0 and 0.980 in the chest holdout ( = 53) and external ( = 402) sets, respectively. This automated, scan-to-prediction platform is highly accurate at CT contrast enhancement detection and may be helpful for artificial intelligence model development and clinical application. CT, Head and Neck, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Machine Learning Algorithms, Contrast Material © RSNA, 2022.
识别CT扫描中静脉内造影剂的存在是基于医学影像的人工智能模型开发与部署的数据管理的重要组成部分。静脉内造影剂的使用在影像元数据中往往记录不充分,这就需要临床专家进行不切实际的人工标注。作者开发了一个基于卷积神经网络(CNN)的深度学习平台来识别CT扫描中的静脉内造影剂增强情况。为了进行模型开发和验证,作者使用了六个独立的头颈部(HN)和胸部CT扫描数据集,总共1979次扫描的133480个轴向二维切片,这些切片由临床专家进行了人工标注。首先在HN扫描上训练了五个CNN模型用于造影剂增强检测。在一个保留集和外部测试集上对模型性能进行患者层面的评估。然后在胸部CT数据上对模型进行微调并进行外部验证。本研究发现,1496次扫描(75.6%)的医学数字成像和通信元数据标签中缺少或错误标注了静脉内造影剂。基于EfficientNetB4的模型表现最佳,在HN保留集(n = 216)和外部集(n = 595)中的曲线下面积(AUC)分别为0.996和1.0,在胸部保留集(n = 53)和外部集(n = 402)中的AUC分别为1.0和0.980。这个自动化的、从扫描到预测的平台在CT造影剂增强检测方面高度准确,可能有助于人工智能模型的开发和临床应用。CT、头颈部、监督学习、迁移学习、卷积神经网络(CNN)、机器学习算法、造影剂 © RSNA,2022年