Ansari Amir, Pillay Kirubin, Arasteh Emad, Dereymaeker Anneleen, Mellado Gabriela Schmidt, Jansen Katrien, Winkler Anderson M, Naulaers Gunnar, Bhatt Aomesh, Huffel Sabine Van, Hartley Caroline, Vos Maarten De, Slater Rebeccah, Baxter Luke
Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.
Department of Paediatrics, University of Oxford, Oxford, UK.
Clin Neurophysiol. 2024 Jul;163:226-235. doi: 10.1016/j.clinph.2024.05.002. Epub 2024 May 10.
Electroencephalography (EEG) can be used to estimate neonates' biological brain age. Discrepancies between postmenstrual age and brain age, termed the brain age gap, can potentially quantify maturational deviation. Existing brain age EEG models are not well suited to clinical cot-side use for estimating neonates' brain age gap due to their dependency on relatively large data and pre-processing requirements.
We trained a deep learning model on resting state EEG data from preterm neonates with normal neurodevelopmental Bayley Scale of Infant and Toddler Development (BSID) outcomes, using substantially reduced data requirements. We subsequently tested this model in two independent datasets from two clinical sites.
In both test datasets, using only 20 min of resting-state EEG activity from a single channel, the model generated accurate age predictions: mean absolute error = 1.03 weeks (p-value = 0.0001) and 0.98 weeks (p-value = 0.0001). In one test dataset, where 9-month follow-up BSID outcomes were available, the average neonatal brain age gap in the severe abnormal outcome group was significantly larger than that of the normal outcome group: difference in mean brain age gap = 0.50 weeks (p-value = 0.04).
These findings demonstrate that the deep learning model generalises to independent datasets from two clinical sites, and that the model's brain age gap magnitudes differ between neonates with normal and severe abnormal follow-up neurodevelopmental outcomes.
The magnitude of neonates' brain age gap, estimated using only 20 min of resting state EEG data from a single channel, can encode information of clinical neurodevelopmental value.
脑电图(EEG)可用于估计新生儿的生物学脑龄。月经后年龄与脑龄之间的差异,即脑龄差距,有可能量化成熟度偏差。现有的脑龄EEG模型由于依赖相对大量的数据和预处理要求,不太适合在临床床边用于估计新生儿的脑龄差距。
我们使用大幅减少的数据要求,在神经发育正常的早产新生儿的静息态EEG数据上训练了一个深度学习模型,这些新生儿的婴幼儿发展贝利量表(BSID)结果正常。随后,我们在来自两个临床站点的两个独立数据集中测试了该模型。
在两个测试数据集中,仅使用来自单个通道的20分钟静息态EEG活动,该模型就生成了准确的年龄预测:平均绝对误差分别为1.03周(p值 = 0.0001)和0.98周(p值 = 0.0001)。在一个有9个月随访BSID结果的测试数据集中,严重异常结果组的平均新生儿脑龄差距明显大于正常结果组:平均脑龄差距差异为0.50周(p值 = 0.04)。
这些发现表明,深度学习模型能够推广到来自两个临床站点的独立数据集,并且该模型的脑龄差距大小在随访神经发育结果正常和严重异常的新生儿之间有所不同。
仅使用来自单个通道的20分钟静息态EEG数据估计的新生儿脑龄差距大小,可以编码具有临床神经发育价值的信息。