Suppr超能文献

[基于脑电图的脑龄预测研究进展]

[Research progress in electroencephalogram-based brain age prediction].

作者信息

Zu Hongyue, Zhan Ping, Yu Hui, Wang Weidong, Liu Hongyun

机构信息

Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing 100853, P. R. China.

Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):832-840. doi: 10.7507/1001-5515.202503043.

Abstract

Brain age prediction, as a significant approach for assessing brain health and early diagnosing neurodegenerative diseases, has garnered widespread attention in recent years. Electroencephalogram (EEG), an non-invasive, convenient, and cost-effective neurophysiological signal, offers unique advantages for brain age prediction due to its high temporal resolution and strong correlation with brain functional states. Despite substantial progress in enhancing prediction accuracy and generalizability, challenges remain in data quality and model interpretability. This review comprehensively examined the advancements in EEG-based brain age prediction, detailing key aspects of data preprocessing, feature extraction, model construction, and result evaluation. It also summarized the current applications of machine learning and deep learning methods in this field, analyzed existing issues, and explored future directions to promote the widespread application of EEG-based brain age prediction in both clinical and research settings.

摘要

脑龄预测作为评估脑健康和早期诊断神经退行性疾病的重要方法,近年来受到了广泛关注。脑电图(EEG)作为一种非侵入性、便捷且经济高效的神经生理信号,因其高时间分辨率以及与脑功能状态的强相关性,在脑龄预测方面具有独特优势。尽管在提高预测准确性和泛化性方面取得了显著进展,但在数据质量和模型可解释性方面仍存在挑战。本综述全面审视了基于脑电图的脑龄预测的进展,详细阐述了数据预处理、特征提取、模型构建和结果评估的关键方面。它还总结了机器学习和深度学习方法在该领域的当前应用,分析了现有问题,并探索了未来方向,以促进基于脑电图的脑龄预测在临床和研究环境中的广泛应用。

相似文献

1
[Research progress in electroencephalogram-based brain age prediction].[基于脑电图的脑龄预测研究进展]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):832-840. doi: 10.7507/1001-5515.202503043.

本文引用的文献

6
Machine learning of brain-specific biomarkers from EEG.从脑电图中机器学习脑特异性生物标志物。
EBioMedicine. 2024 Aug;106:105259. doi: 10.1016/j.ebiom.2024.105259. Epub 2024 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验