Suppr超能文献

单细胞中多基因风险评分的反卷积揭示了复杂人类疾病的细胞和分子异质性。

Deconvolution of polygenic risk score in single cells unravels cellular and molecular heterogeneity of complex human diseases.

作者信息

Zhang Sai, Shu Hantao, Zhou Jingtian, Rubin-Sigler Jasper, Yang Xiaoyu, Liu Yuxi, Cooper-Knock Johnathan, Monte Emma, Zhu Chenchen, Tu Sharon, Li Han, Tong Mingming, Ecker Joseph R, Ichida Justin K, Shen Yin, Zeng Jianyang, Tsao Philip S, Snyder Michael P

机构信息

Department of Epidemiology, University of Florida, Gainesville, FL, USA.

Departments of Biostatistics & Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.

出版信息

bioRxiv. 2024 May 14:2024.05.14.594252. doi: 10.1101/2024.05.14.594252.

Abstract

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes and . We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

摘要

多基因风险评分(PRSs)通常用于预测个体患复杂疾病的遗传风险。然而,它们对疾病发病机制的影响在很大程度上仍然有限。在此,我们引入了scPRS,这是一种几何深度学习模型,它利用参考单细胞染色质可及性分析数据构建单细胞分辨率的PRS,以加强生物学发现以及疾病预测。在包括2型糖尿病(T2D)、肥厚型心肌病(HCM)和阿尔茨海默病(AD)在内的多种复杂疾病中的实际应用表明,与传统的PRS方法相比,scPRS具有卓越的预测能力。重要的是,scPRS不仅能预测疾病风险,还能揭示与疾病相关的细胞,如T2D的激素高的α和β细胞、HCM的心肌细胞和周细胞,以及AD的星形胶质细胞、小胶质细胞和少突胶质前体细胞。通过分层多组学分析,scPRS进一步确定了细胞类型特异性的遗传基础,将疾病相关的遗传变异与相应细胞类型内的基因调控联系起来。我们证实了scPRS优先排序的HCM基因与疾病的相关性,并证明mavacamten治疗可挽救HCM心肌细胞中这些基因的抑制作用。此外,我们建立了AD风险变异rs7922621与其靶基因之间一种新的小胶质细胞特异性调控关系。我们进一步说明了抑制这两个基因对小胶质细胞吞噬作用的有害影响。我们的工作为精确的疾病预测以及对复杂疾病的遗传、细胞和分子基础进行系统研究提供了一个多任务、可解释的框架,为单细胞遗传学奠定了方法学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5097/11118500/124e75665e82/nihpp-2024.05.14.594252v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验