Suppr超能文献

癫痫发作预测结果指标的必要条件:癫痫发作频率和基准模型。

Necessary for seizure forecasting outcome metrics: seizure frequency and benchmark model.

作者信息

Chang Chi-Yuan, Zhang Boyu, Moss Robert, Picard Rosalind, Westover M Brandon, Goldenholz Daniel

机构信息

Harvard Medical School, Boston MA.

Beth Israel Deaconess Medical Center, Boston, MA.

出版信息

medRxiv. 2024 May 16:2024.05.15.24307446. doi: 10.1101/2024.05.15.24307446.

Abstract

Work is ongoing to advance seizure forecasting, but the performance metrics used to evaluate model effectiveness can sometimes lead to misleading outcomes. For example, some metrics improve when tested on patients with a particular range of seizure frequencies (SF). This study illustrates the connection between SF and metrics. Additionally, we compared benchmarks for testing performance: a moving average (MA) or the commonly used permutation benchmark. Three data sets were used for the evaluations: (1) Self-reported seizure diaries of 3,994 Seizure Tracker patients; (2) Automatically detected (and sometimes manually reported or edited) generalized tonic-clonic seizures from 2,350 Empatica Embrace 2 and Mate App seizure diary users, and (3) Simulated datasets with varying SFs. Metrics of calibration and discrimination were computed for each dataset, comparing MA and permutation performance across SF values. Most metrics were found to depend on SF. The MA model outperformed or matched the permutation model in all cases. The findings highlight SF's role in seizure forecasting accuracy and the MA model's suitability as a benchmark. This underscores the need for considering patient SF in forecasting studies and suggests the MA model may provide a better standard for evaluating future seizure forecasting models.

摘要

癫痫发作预测的研究工作正在推进,但用于评估模型有效性的性能指标有时可能导致误导性结果。例如,某些指标在对具有特定癫痫发作频率(SF)范围的患者进行测试时会有所改善。本研究阐述了SF与指标之间的联系。此外,我们比较了测试性能的基准:移动平均值(MA)或常用的排列基准。使用了三个数据集进行评估:(1)3994名癫痫发作追踪器患者的自我报告癫痫发作日记;(2)来自2350名Empatica Embrace 2和Mate App癫痫发作日记用户的自动检测(有时是手动报告或编辑)的全身强直阵挛发作,以及(3)具有不同SF的模拟数据集。针对每个数据集计算校准和辨别指标,比较不同SF值下的MA和排列性能。发现大多数指标都依赖于SF。在所有情况下,MA模型的表现优于或与排列模型相当。这些发现突出了SF在癫痫发作预测准确性中的作用以及MA模型作为基准的适用性。这强调了在预测研究中考虑患者SF的必要性,并表明MA模型可能为评估未来癫痫发作预测模型提供更好的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a46/11118655/c17d235dc1ec/nihpp-2024.05.15.24307446v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验