Fontanet Javier G, Yuz Juan I, Garnier Hugues, Morales Arturo, Cortés Juan Pablo, Zañartu Matías
Department of Electronic Engineering, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile.
Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France.
Biomed Signal Process Control. 2024 Sep;95(Pt A). doi: 10.1016/j.bspc.2024.106394. Epub 2024 May 3.
Mathematical models that accurately simulate the physiological systems of the human body serve as cornerstone instruments for advancing medical science and facilitating innovative clinical interventions. One application is the modeling of the subglottal tract and neck skin properties for its use in the ambulatory assessment of vocal function, by enabling non-invasive monitoring of glottal airflow via a neck surface accelerometer. For the technique to be effective, the development of an accurate building block model for the subglottal tract is required. Such a model is expected to utilize glottal volume velocity as the input parameter and yield neck skin acceleration as the corresponding output. In contrast to preceding efforts that employed frequency-domain methods, the present paper leverages system identification techniques to derive a parsimonious continuous-time model of the subglottal tract using time-domain data samples. Additionally, an examination of the model order is conducted through the application of various information criteria. Once a low-order model is successfully fitted, an inverse filter based on a Kalman smoother is utilized for the estimation of glottal volume velocity and related aerodynamic metrics, thereby constituting the most efficient execution of these estimates thus far. Anticipated reductions in computational time and complexity due to the lower order of the subglottal model hold particular relevance for real-time monitoring. Simultaneously, the methodology proves efficient in generating a spectrum of aerodynamic features essential for ambulatory vocal function assessment.
能够精确模拟人体生理系统的数学模型是推动医学科学发展和促进创新临床干预的基石工具。一个应用是对声门下声道和颈部皮肤特性进行建模,以便通过颈部表面加速度计对声门气流进行非侵入性监测,用于动态评估发声功能。为使该技术有效,需要开发一个精确的声门下声道积木模型。这样的模型预计将声门体积速度作为输入参数,并产生相应的颈部皮肤加速度作为输出。与之前采用频域方法的研究不同,本文利用系统辨识技术,使用时域数据样本推导声门下声道的简约连续时间模型。此外,通过应用各种信息准则对模型阶数进行检验。一旦成功拟合出低阶模型,基于卡尔曼平滑器的逆滤波器将用于估计声门体积速度和相关空气动力学指标,从而构成迄今为止这些估计的最有效执行方式。由于声门下模型阶数较低,预计计算时间和复杂度的降低对实时监测具有特别重要的意义。同时,该方法在生成一系列动态发声功能评估所需的空气动力学特征方面证明是有效的。