Suppr超能文献

基于关系变换器和知识蒸馏增强的图推理方法用于药物相关副作用预测

Graph reasoning method enhanced by relational transformers and knowledge distillation for drug-related side effect prediction.

作者信息

Bai Honglei, Lu Siyuan, Zhang Tiangang, Cui Hui, Nakaguchi Toshiya, Xuan Ping

机构信息

School of Computer Science and Technology, Heilongjiang University, Harbin, China.

School of Mathematical Science, Heilongjiang University, Harbin, China.

出版信息

iScience. 2024 Mar 26;27(6):109571. doi: 10.1016/j.isci.2024.109571. eCollection 2024 Jun 21.

Abstract

Identifying the side effects related to drugs is beneficial for reducing the risk of drug development failure and saving the drug development cost. We proposed a graph reasoning method, RKDSP, to fuse the semantics of multiple connection relationships, the local knowledge within each meta-path, the global knowledge among multiple meta-paths, and the attributes of the drug and side effect node pairs. We constructed drug-side effect heterogeneous graphs consisting of the drugs, side effects, and their similarity and association connections. Multiple relational transformers were established to learn node features from diverse meta-path semantic perspectives. A knowledge distillation module was constructed to learn local and global knowledge of multiple meta-paths. Finally, an adaptive convolutional neural network-based strategy was presented to adaptively encode the attributes of each drug-side effect node pair. The experimental results demonstrated that RKDSP outperforms the compared state-of-the-art prediction approaches.

摘要

识别与药物相关的副作用有助于降低药物研发失败的风险并节省药物研发成本。我们提出了一种图推理方法RKDSP,以融合多种连接关系的语义、每个元路径内的局部知识、多个元路径之间的全局知识以及药物和副作用节点对的属性。我们构建了由药物、副作用及其相似性和关联连接组成的药物-副作用异构图。建立了多个关系变换器,从不同的元路径语义角度学习节点特征。构建了一个知识蒸馏模块来学习多个元路径的局部和全局知识。最后,提出了一种基于自适应卷积神经网络的策略,以自适应地编码每个药物-副作用节点对的属性。实验结果表明,RKDSP优于所比较的现有预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef7/11126883/d45fc9488adf/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验