Suppr超能文献

基于混合时间序列模型的中国大陆梅毒趋势分析与预测。

Analysis and forecasting of syphilis trends in mainland China based on hybrid time series models.

机构信息

School of Public Health, Shandong Second University, Weifang, China.

School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.

出版信息

Epidemiol Infect. 2024 May 27;152:e93. doi: 10.1017/S0950268824000694.

Abstract

Syphilis remains a serious public health problem in mainland China that requires attention, modelling to describe and predict its prevalence patterns can help the government to develop more scientific interventions. The seasonal autoregressive integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs (SARIMA-NARX) model were used to simulate the time series data of the syphilis incidence from January 2004 to November 2023 respectively. Compared to the SARIMA, LSTM, and SARIMA-LSTM models, the median absolute deviation (MAD) value of the SARIMA-NARX model decreases by 352.69%, 4.98%, and 3.73%, respectively. The mean absolute percentage error (MAPE) value decreases by 73.7%, 23.46%, and 13.06%, respectively. The root mean square error (RMSE) value decreases by 68.02%, 26.68%, and 23.78%, respectively. The mean absolute error (MAE) value decreases by 70.90%, 23.00%, and 21.80%, respectively. The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases more accurately than the basic SARIMA and LSTM methods, so that can be used for governments to develop long-term syphilis prevention and control programs. In addition, the predicted cases still maintain a fairly high level of incidence, so there is an urgent need to develop more comprehensive prevention strategies.

摘要

梅毒仍然是中国大陆严重的公共卫生问题,需要引起关注。对其流行模式进行建模描述和预测有助于政府制定更科学的干预措施。分别采用季节性自回归综合移动平均(SARIMA)模型、长短期记忆网络(LSTM)模型、SARIMA-LSTM 混合模型和 SARIMA 与非线性自回归外生输入模型(SARIMA-NARX)对 2004 年 1 月至 2023 年 11 月梅毒发病率时间序列数据进行拟合。与 SARIMA、LSTM 和 SARIMA-LSTM 模型相比,SARIMA-NARX 模型的中值绝对偏差(MAD)值分别降低了 352.69%、4.98%和 3.73%。平均绝对百分比误差(MAPE)值分别降低了 73.7%、23.46%和 13.06%。均方根误差(RMSE)值分别降低了 68.02%、26.68%和 23.78%。平均绝对误差(MAE)值分别降低了 70.90%、23.00%和 21.80%。SARIMA-NARX 和 SARIMA-LSTM 方法比基本的 SARIMA 和 LSTM 方法更准确地预测梅毒病例,因此可用于政府制定长期梅毒预防和控制方案。此外,预测病例仍保持相当高的发病率水平,因此迫切需要制定更全面的预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2798/11736451/091b6aede1d8/S0950268824000694_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验