Suppr超能文献

ARIMA 和 ARIMA-ERNN 模型预测 2004 至 2021 年中国大陆百日咳发病率。

ARIMA and ARIMA-ERNN models for prediction of pertussis incidence in mainland China from 2004 to 2021.

机构信息

School of Public Health, Fudan University, Shanghai, 200032, China.

NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.

出版信息

BMC Public Health. 2022 Jul 29;22(1):1447. doi: 10.1186/s12889-022-13872-9.

Abstract

OBJECTIVE

To compare an autoregressive integrated moving average (ARIMA) model with a model that combines ARIMA with the Elman recurrent neural network (ARIMA-ERNN) in predicting the incidence of pertussis in mainland China.

BACKGROUND

The incidence of pertussis has increased rapidly in mainland China since 2016, making the disease an increasing public health threat. There is a pressing need for models capable of accurately predicting the incidence of pertussis in order to guide prevention and control measures. We developed and compared two models for predicting pertussis incidence in mainland China.

METHODS

Data on the incidence of pertussis in mainland China from 2004 to 2019 were obtained from the official website of the Chinese Center for Disease Control and Prevention. An ARIMA model was established using SAS (ver. 9.4) software and an ARIMA-ERNN model was established using MATLAB (ver. R2019a) software. The performances of these models were compared.

RESULTS

From 2004 to 2019, there were 104,837 reported cases of pertussis in mainland China, with an increasing incidence over time. The incidence of pertussis showed obvious seasonal characteristics, with the peak lasting from March to September every year. Compared with the mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the ARIMA model, those of the ARIMA-ERNN model were 81.43%, 95.97% and 80.86% lower, respectively, in fitting performance. In terms of prediction performance, the MAE, MSE and MAPE were 37.75%, 56.88% and 43.75% lower, respectively.

CONCLUSION

The fitting and prediction performances of the ARIMA-ERNN model were better than those of the ARIMA model. This provides theoretical support for the prediction of infectious diseases and should be beneficial to public health decision making.

摘要

目的

比较自回归积分移动平均(ARIMA)模型与 ARIMA 与 Elman 递归神经网络(ARIMA-ERNN)相结合的模型在中国内地预测百日咳发病率的能力。

背景

自 2016 年以来,中国内地百日咳发病率迅速上升,使该疾病成为日益严重的公共卫生威胁。迫切需要能够准确预测百日咳发病率的模型,以指导预防和控制措施。我们开发并比较了两种预测中国内地百日咳发病率的模型。

方法

从中国疾病预防控制中心官方网站获取 2004 年至 2019 年中国内地百日咳发病率数据。使用 SAS(版本 9.4)软件建立 ARIMA 模型,使用 MATLAB(版本 R2019a)软件建立 ARIMA-ERNN 模型。比较这些模型的性能。

结果

2004 年至 2019 年,中国内地报告百日咳病例 104837 例,发病率随时间呈上升趋势。百日咳发病率具有明显的季节性特征,每年 3 月至 9 月持续高峰。与 ARIMA 模型的均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)相比,ARIMA-ERNN 模型的拟合性能分别低 81.43%、95.97%和 80.86%。在预测性能方面,MAE、MSE 和 MAPE 分别低 37.75%、56.88%和 43.75%。

结论

ARIMA-ERNN 模型的拟合和预测性能优于 ARIMA 模型。这为传染病预测提供了理论支持,应有助于公共卫生决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/9338508/a48fa1fd3959/12889_2022_13872_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验