College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, China.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae258.
Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).
微小核糖核酸(miRNAs)在各种生物现象中对人类转录组的调控起着关键作用。因此,miRNA 表达失调的积累在复杂疾病的发生和发展中经常起着重要作用。然而,在现阶段,准确识别失调的 miRNA 仍然面临挑战。最近出现了一些用于预测 miRNA 和疾病之间关联的生物信息学工具。然而,现有的参考工具主要在一般状态下识别 miRNA-疾病关联,而无法在特定疾病状态下精确定位失调的 miRNA。此外,在分析 miRNA-疾病关联时,没有研究充分考虑 miRNA-miRNA 相互作用(MMI)。在这里,我们引入了一种系统方法,称为 IDMIR,它可以在基因表达背景下通过 MMI 网络识别表达失调的 miRNA,该网络的结构旨在根据特定疾病背景下的共享生物学功能隐式连接 miRNA。IDMIR 的优势在于,它通过分析 MMIs 的变化,利用基因表达数据来识别失调的 miRNA。我们通过对乳腺癌和膀胱癌的数据分析说明了 IDMIR 方法对失调 miRNA 的出色预测能力。IDMIR 可以通过比较超越几种现有的 miRNA-疾病关联预测方法。我们相信这种方法弥补了预测 miRNA-疾病关联的不足,并可能为疾病的诊断和治疗提供新的思路和可能性。IDMIR 方法现在可以在 CRAN(https://CRAN.R-project.org/package=IDMIR)上作为免费的 R 包使用。