Suppr超能文献

基于锚定在 g-CN@FeO 纳米杂化上的新型质子离子液体的 RSM 和 ANN 方法在增强生物柴油生产建模中的应用。

RSM and ANN methodologies in modeling the enhanced biodiesel production using novel protic ionic liquid anchored on g-CN@FeO nanohybrid.

机构信息

Department of Chemistry, College of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Chemosphere. 2024 Jul;360:142399. doi: 10.1016/j.chemosphere.2024.142399. Epub 2024 May 25.

Abstract

Herin, a new nanohybrid acid catalyst was fabricated for the efficient biodiesel production. At the first, magnetic porous nanosheets of graphitic carbon nitride (g-CN@FeO) was prepared and then functionalized with sulfonic acid. Next, the preparation of the catalyst was completed by mixing this surface modified support with n-methyl imidazolium butyl sulfonate zwitterion to achieve non-covalent immobilized acidic ionic liquid on g-CN@FeO support. The catalyst underwent characterization through various techniques such as H and C NMR, FTIR, SEM, TEM, TGA, EDX and BET which revealing that the magnetic support loaded acidic ionic liquids via a robust charge interaction effect enabling the one-pot production of biodiesel from low-quality oils. Furthermore, the catalyst could be simply recovered using a permanent magnet and reused multiple times without a significant decline in catalytic activity. Consequently, the solid catalyst based on ionic liquids holds promise for the sustainable and eco-friendly production of biodiesel from low-quality oils. Furthermore, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were used to model the yield and various process parameters. The findings underscore the enhanced predictive capabilities of ANN in comparison to RSM.

摘要

在此,我们制备了一种新型的纳米杂化酸催化剂,用于高效制备生物柴油。首先,制备了磁性多孔石墨相氮化碳纳米片(g-CN@FeO),然后对其进行了磺酸功能化。接下来,通过将表面改性的载体与 N-甲基咪唑啉丁基磺酸盐两性离子混合,实现了非共价固定化酸性离子液体在 g-CN@FeO 载体上。通过 H 和 C NMR、FTIR、SEM、TEM、TGA、EDX 和 BET 等多种技术对催化剂进行了表征,结果表明,磁性载体通过强电荷相互作用负载酸性离子液体,从而实现了从低质油中一锅法制备生物柴油。此外,该催化剂可以通过永磁体简单回收,并可多次重复使用,而催化活性没有明显下降。因此,基于离子液体的固体催化剂有望实现从低质油中可持续、环保地生产生物柴油。此外,还使用响应面法(RSM)和人工神经网络(ANN)对产率和各种工艺参数进行了建模。研究结果表明,ANN 在预测能力方面优于 RSM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验