Suppr超能文献

基于对抗学习的多级密集传输知识蒸馏用于早产儿视网膜病变(AP-ROP)检测

Adversarial learning-based multi-level dense-transmission knowledge distillation for AP-ROP detection.

作者信息

Xie Hai, Liu Yaling, Lei Haijun, Song Tiancheng, Yue Guanghui, Du Yueshanyi, Wang Tianfu, Zhang Guoming, Lei Baiying

机构信息

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.

出版信息

Med Image Anal. 2023 Feb;84:102725. doi: 10.1016/j.media.2022.102725. Epub 2022 Dec 9.

Abstract

The Aggressive Posterior Retinopathy of Prematurity (AP-ROP) is the major cause of blindness for premature infants. The automatic diagnosis method has become an important tool for detecting AP-ROP. However, most existing automatic diagnosis methods were with heavy complexity, which hinders the development of the detecting devices. Hence, a small network (student network) with a high imitation ability is exactly needed, which can mimic a large network (teacher network) with promising diagnostic performance. Also, if the student network is too small due to the increasing gap between teacher and student networks, the diagnostic performance will drop. To tackle the above issues, we propose a novel adversarial learning-based multi-level dense knowledge distillation method for detecting AP-ROP. Specifically, the pre-trained teacher network is utilized to train multiple intermediate-size networks (i.e., teacher-assistant networks) and one student network by dense transmission mode, where the knowledge from all upper-level networks is transmitted to the current lower-level network. To ensure that two adjacent networks can distill the abundant knowledge, the adversarial learning module is leveraged to enforce the lower-level network to generate the features that are similar to those of the upper-level network. Extensive experiments demonstrate that our proposed method can realize the effective knowledge distillation from the teacher to student networks. We achieve a promising knowledge distillation performance for our private dataset and a public dataset, which can provide a new insight for devising lightweight detecting systems of fundus diseases for practical use.

摘要

侵袭性早产儿视网膜病变(AP-ROP)是早产儿失明的主要原因。自动诊断方法已成为检测AP-ROP的重要工具。然而,大多数现有的自动诊断方法复杂度很高,这阻碍了检测设备的发展。因此,迫切需要一个具有高模仿能力的小型网络(学生网络),它可以模仿具有良好诊断性能的大型网络(教师网络)。此外,如果学生网络由于教师网络和学生网络之间的差距不断增大而太小,诊断性能将会下降。为了解决上述问题,我们提出了一种基于对抗学习的多级密集知识蒸馏方法来检测AP-ROP。具体来说,利用预训练的教师网络通过密集传输模式训练多个中等规模的网络(即教师辅助网络)和一个学生网络,其中所有上层网络的知识都传输到当前的下层网络。为了确保两个相邻网络能够蒸馏丰富的知识,利用对抗学习模块强制下层网络生成与上层网络相似的特征。大量实验表明,我们提出的方法可以实现从教师网络到学生网络的有效知识蒸馏。我们在我们的私有数据集和一个公共数据集上实现了有前景的知识蒸馏性能,这可以为设计用于实际应用的眼底疾病轻量级检测系统提供新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验