Suppr超能文献

通过等离子体通道实现畸变激光束的稳定与校正。

Stabilization and correction of aberrated laser beams via plasma channelling.

作者信息

Rondepierre Alexandre, Zhidkov Alexei, Oumbarek Espinos Driss, Hosokai Tomonao

机构信息

Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 565-0871, Japan.

Laser Accelerator R&D Team, Innovative Light Sources Division, RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, Osaka, 679-5148, Japan.

出版信息

Sci Rep. 2024 May 27;14(1):12078. doi: 10.1038/s41598-024-62997-x.

Abstract

High-power laser applications, and especially laser wakefield acceleration, continue to draw attention through various research topics, and may bring many industrial applications based on compact accelerators, from ultrafast imaging to cancer therapy. However, one main step towards this is the arch issue of stability. Indeed, the interaction of a complex, aberrated laser beam with plasma involves a lot of physical phenomena and non-linear effects, such as self-focusing and filamentation. Different outcomes can be induced by small laser instabilities (i.e. laser wavefront), therefore harming any practical solution. One promising path to be explored is the use of a plasma channel to possibly guide and correct aberrated beams. Complex and costly experimental facilities are required to investigate such topics. However, one way to quickly and efficiently explore new solutions is numerical simulations, especially Particle-In-Cell (PIC) simulations if, and only if, one is confidently implementing such aberrated beams which, contrary to a Gaussian beam, do not have analytical solutions. In this research, we propose two new advancements: the correct implementation of aberrated laser beams inside a 3D PIC code, showing a great consistency, under vacuum, compared to the calculations with Fresnel theory); and the correction of their quality via the propagation inside a plasma channel. We demonstrate improvements in the beam pattern, becoming closer to a single plasma mode with less distortions, and thus suggesting a better stability for the targeted application. Through this confident calculation technique for distorted laser beams, we are now expecting to proceed with more accurate PIC simulations, closer to experimental conditions, and obtained results with plasma channels indicate promising future research.

摘要

高功率激光应用,尤其是激光尾场加速,通过各种研究课题持续吸引着人们的关注,并且可能带来许多基于紧凑型加速器的工业应用,从超快成像到癌症治疗。然而,朝着这一目标迈出的一个主要步骤是稳定性这一核心问题。实际上,复杂的、有像差的激光束与等离子体的相互作用涉及许多物理现象和非线性效应,例如自聚焦和丝状化。激光的微小不稳定性(即激光波前)可能会导致不同的结果,从而损害任何实际解决方案。一条有前景的探索途径是利用等离子体通道来引导和校正有像差的光束。研究这些课题需要复杂且昂贵的实验设施。然而,一种快速高效探索新解决方案的方法是数值模拟,特别是粒子模拟(PIC),前提是且仅当能够可靠地实现这种有像差的光束时才行,因为与高斯光束不同,有像差的光束没有解析解。在本研究中,我们提出了两项新进展:在三维PIC代码中正确实现有像差的激光束,在真空中与菲涅耳理论计算相比显示出高度一致性;以及通过在等离子体通道中的传播来校正其质量。我们展示了光束模式的改进,使其更接近单一等离子体模式且畸变更小,从而表明目标应用具有更好的稳定性。通过这种针对畸变激光束的可靠计算技术,我们现在期望进行更精确的PIC模拟,更接近实验条件,并且等离子体通道的计算结果表明未来研究前景广阔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/766a/11130265/6d0bd9e1483e/41598_2024_62997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验