Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
Nat Commun. 2024 May 27;15(1):4514. doi: 10.1038/s41467-024-48901-1.
Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 μm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis.
了解糖基化酶在高尔基体中的分布和动态对于更好地理解这种修饰至关重要。在这里,我们使用 CRISPR/Cas9 基因敲入技术和超分辨率显微镜,表明高尔基体复合物是由一些直径为 1-3μm 的小“高尔基体单元”组装而成的。每个高尔基体单元都包含小的糖基化酶结构域,我们称之为“区域”。N-和 O-糖基化酶的区域是共定位的。然而,它们与糖胺聚糖合成酶的区域的共定位较少。高尔基体单元动态改变形状,糖基化酶的区域在单元边缘附近快速移动。光漂白分析表明,一种糖胺聚糖合成酶在单元之间移动。巨蛋白的耗竭会使单元解体,并阻止糖胺聚糖合成酶的移动,从而导致糖胺聚糖合成不足。因此,我们展示了高尔基体的结构-功能关系及其在人类发病机制中的意义。