Suppr超能文献

基于机器学习的方法建立乳腺癌腋窝淋巴结转移的非侵入性术前预测模型:联合超声参数和乳腺伽马特异性成像特征。

A non-invasive preoperative prediction model for predicting axillary lymph node metastasis in breast cancer based on a machine learning approach: combining ultrasonographic parameters and breast gamma specific imaging features.

机构信息

Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, 361006, China.

Department of General Surgery, Shanghai Public Health Clinical Center, Shanghai, 201508, China.

出版信息

Radiat Oncol. 2024 May 27;19(1):63. doi: 10.1186/s13014-024-02453-2.

Abstract

BACKGROUND

The most common route of breast cancer metastasis is through the mammary lymphatic network. An accurate assessment of the axillary lymph node (ALN) burden before surgery can avoid unnecessary axillary surgery, consequently preventing surgical complications. In this study, we aimed to develop a non-invasive prediction model incorporating breast specific gamma image (BSGI) features and ultrasonographic parameters to assess axillary lymph node status.

MATERIALS AND METHODS

Cohorts of breast cancer patients who underwent surgery between 2012 and 2021 were created (The training set included 1104 ultrasound images and 940 BSGI images from 235 patients, the test set included 568 ultrasound images and 296 BSGI images from 99 patients) for the development of the prediction model. six machine learning (ML) methods and recursive feature elimination were trained in the training set to create a strong prediction model. Based on the best-performing model, we created an online calculator that can make a linear predictor in patients easily accessible to clinicians. The receiver operating characteristic (ROC) and calibration curve are used to verify the model performance respectively and evaluate the clinical effectiveness of the model.

RESULTS

Six ultrasonographic parameters (transverse diameter of tumour, longitudinal diameter of tumour, lymphatic echogenicity, transverse diameter of lymph nodes, longitudinal diameter of lymph nodes, lymphatic color Doppler flow imaging grade) and one BSGI features (axillary mass status) were selected based on the best-performing model. In the test set, the support vector machines' model showed the best predictive ability (AUC = 0.794, sensitivity = 0.641, specificity = 0.8, PPV = 0.676, NPV = 0.774 and accuracy = 0.737). An online calculator was established for clinicians to predict patients' risk of ALN metastasis ( https://wuqian.shinyapps.io/shinybsgi/ ). The result in ROC showed the model could benefit from incorporating BSGI feature.

CONCLUSION

This study developed a non-invasive prediction model that incorporates variables using ML method and serves to clinically predict ALN metastasis and help in selection of the appropriate treatment option.

摘要

背景

乳腺癌转移最常见的途径是通过乳腺淋巴网络。在手术前准确评估腋窝淋巴结(ALN)的负担,可以避免不必要的腋窝手术,从而预防手术并发症。在这项研究中,我们旨在开发一种非侵入性预测模型,该模型结合乳腺特异性伽马图像(BSGI)特征和超声参数来评估腋窝淋巴结状态。

材料和方法

创建了 2012 年至 2021 年间接受手术的乳腺癌患者队列(训练集包括 235 名患者的 1104 个超声图像和 940 个 BSGI 图像,测试集包括 99 名患者的 568 个超声图像和 296 个 BSGI 图像),以开发预测模型。在训练集中,使用六种机器学习(ML)方法和递归特征消除方法进行训练,以创建强大的预测模型。基于表现最佳的模型,我们创建了一个在线计算器,可以使临床医生更容易地对患者进行线性预测。分别使用接受者操作特征(ROC)和校准曲线来验证模型性能,并评估模型的临床效果。

结果

基于表现最佳的模型,选择了六个超声参数(肿瘤的横径、肿瘤的纵径、淋巴结的回声性、淋巴结的横径、淋巴结的纵径、淋巴结的彩色多普勒血流成像分级)和一个 BSGI 特征(腋窝肿块状态)。在测试集中,支持向量机模型显示出最佳的预测能力(AUC=0.794、灵敏度=0.641、特异性=0.8、PPV=0.676、NPV=0.774 和准确性=0.737)。为临床医生建立了一个在线计算器,用于预测患者 ALN 转移的风险(https://wuqian.shinyapps.io/shinybsgi/)。ROC 中的结果表明,该模型可以从结合 BSGI 特征中受益。

结论

本研究开发了一种非侵入性预测模型,该模型使用 ML 方法结合变量,用于临床预测 ALN 转移,并有助于选择合适的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa3a/11131273/02ddf336d5f9/13014_2024_2453_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验