Suppr超能文献

深度学习在 CT 诊断甲状腺癌颈淋巴结转移中的应用:外部验证和对住院医师培训的临床实用性。

Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training.

机构信息

Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul, 110799, South Korea.

Department of Radiology, Ajou University School of Medicine, Wonchon-Dong, Yeongtong-Gu, Suwon, 443-380, South Korea.

出版信息

Eur Radiol. 2020 Jun;30(6):3066-3072. doi: 10.1007/s00330-019-06652-4. Epub 2020 Feb 17.

Abstract

PURPOSE

This study aimed to validate a deep learning model's diagnostic performance in using computed tomography (CT) to diagnose cervical lymph node metastasis (LNM) from thyroid cancer in a large clinical cohort and to evaluate the model's clinical utility for resident training.

METHODS

The performance of eight deep learning models was validated using 3838 axial CT images from 698 consecutive patients with thyroid cancer who underwent preoperative CT imaging between January and August 2018 (3606 and 232 images from benign and malignant lymph nodes, respectively). Six trainees viewed the same patient images (n = 242), and their diagnostic performance and confidence level (5-point scale) were assessed before and after computer-aided diagnosis (CAD) was included.

RESULTS

The overall area under the receiver operating characteristics (AUROC) of the eight deep learning algorithms was 0.846 (range 0.784-0.884). The best performing model was Xception, with an AUROC of 0.884. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of Xception were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. After introducing the CAD system, underperforming trainees received more help from artificial intelligence than the higher performing trainees (p = 0.046), and overall confidence levels significantly increased from 3.90 to 4.30 (p < 0.001).

CONCLUSION

The deep learning-based CAD system used in this study for CT diagnosis of cervical LNM from thyroid cancer was clinically validated with an AUROC of 0.884. This approach may serve as a training tool to help resident physicians to gain confidence in diagnosis.

KEY POINTS

• A deep learning-based CAD system for CT diagnosis of cervical LNM from thyroid cancer was validated using data from a clinical cohort. The AUROC for the eight tested algorithms ranged from 0.784 to 0.884. • Of the eight models, the Xception algorithm was the best performing model for the external validation dataset with 0.884 AUROC. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. • The CAD system exhibited potential to improve diagnostic specificity and accuracy in underperforming trainees (3 of 6 trainees, 50.0%). This approach may have clinical utility as a training tool to help trainees to gain confidence in diagnoses.

摘要

目的

本研究旨在利用深度学习模型,在大型临床队列中对甲状腺癌患者的颈部淋巴结转移(LNM)进行 CT 诊断,验证该模型的诊断性能,并评估其在住院医师培训中的临床应用价值。

方法

利用 2018 年 1 月至 8 月间 698 例接受术前 CT 成像的甲状腺癌患者的 3838 张轴向 CT 图像(良性和恶性淋巴结分别为 3606 张和 232 张),对 8 种深度学习模型的性能进行了验证。6 名受训者观察了相同的患者图像(n=242),在纳入计算机辅助诊断(CAD)前后评估了他们的诊断性能和置信度(5 分制)。

结果

8 种深度学习算法的整体接收器工作特征(AUROC)曲线下面积为 0.846(范围 0.784-0.884)。表现最好的模型是 Xception,AUROC 为 0.884。Xception 的诊断准确性、敏感度、特异度、阳性预测值和阴性预测值分别为 82.8%、80.2%、83.0%、83.0%和 80.2%。引入 CAD 系统后,表现不佳的受训者比表现较好的受训者从人工智能中获得了更多的帮助(p=0.046),整体置信度水平从 3.90 显著提高到 4.30(p<0.001)。

结论

本研究基于深度学习的 CAD 系统用于甲状腺癌颈部 LNM 的 CT 诊断,具有临床验证,AUROC 为 0.884。该方法可以作为一种培训工具,帮助住院医师增强诊断信心。

关键点

  • 一项基于深度学习的 CAD 系统,用于甲状腺癌患者 CT 诊断颈部 LNM,使用临床队列数据进行验证。所测试的 8 种算法的 AUROC 范围为 0.784 至 0.884。

  • 在外部验证数据集上,Xception 算法是表现最好的模型,AUROC 为 0.884。其准确性、敏感度、特异度、阳性预测值和阴性预测值分别为 82.8%、80.2%、83.0%、83.0%和 80.2%。

  • CAD 系统具有提高表现不佳的受训者(6 名受训者中的 3 名,占 50.0%)的诊断特异性和准确性的潜力。该方法具有作为培训工具的临床应用价值,可帮助受训者增强诊断信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验