Suppr超能文献

基于卷积神经网络的皮肤癌分类:涉及人类专家的研究的系统综述。

Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.

机构信息

Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.

Department of Dermatology, Heidelberg University, Mannheim, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Eur J Cancer. 2021 Oct;156:202-216. doi: 10.1016/j.ejca.2021.06.049. Epub 2021 Sep 8.

Abstract

BACKGROUND

Multiple studies have compared the performance of artificial intelligence (AI)-based models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinicopathological practice.

OBJECTIVE

The objective of the study was to systematically analyse the current state of research on reader studies involving melanoma and to assess their potential clinical relevance by evaluating three main aspects: test set characteristics (holdout/out-of-distribution data set, composition), test setting (experimental/clinical, inclusion of metadata) and representativeness of participating clinicians.

METHODS

PubMed, Medline and ScienceDirect were screened for peer-reviewed studies published between 2017 and 2021 and dealing with AI-based skin cancer classification involving melanoma. The search terms skin cancer classification, deep learning, convolutional neural network (CNN), melanoma (detection), digital biomarkers, histopathology and whole slide imaging were combined. Based on the search results, only studies that considered direct comparison of AI results with clinicians and had a diagnostic classification as their main objective were included.

RESULTS

A total of 19 reader studies fulfilled the inclusion criteria. Of these, 11 CNN-based approaches addressed the classification of dermoscopic images; 6 concentrated on the classification of clinical images, whereas 2 dermatopathological studies utilised digitised histopathological whole slide images.

CONCLUSIONS

All 19 included studies demonstrated superior or at least equivalent performance of CNN-based classifiers compared with clinicians. However, almost all studies were conducted in highly artificial settings based exclusively on single images of the suspicious lesions. Moreover, test sets mainly consisted of holdout images and did not represent the full range of patient populations and melanoma subtypes encountered in clinical practice.

摘要

背景

多项研究比较了基于人工智能(AI)的皮肤癌自动分类模型与人类专家的表现,从而为成功将基于 AI 的工具转化为临床病理实践奠定了基础。

目的

本研究旨在系统分析涉及黑色素瘤的读者研究的现状,并通过评估三个主要方面来评估其潜在的临床相关性:测试集特征(保留/分布外数据集、组成)、测试设置(实验/临床、元数据的纳入)和参与临床医生的代表性。

方法

在 PubMed、Medline 和 ScienceDirect 上搜索 2017 年至 2021 年期间发表的涉及基于 AI 的皮肤癌分类(涉及黑色素瘤)的同行评审研究。使用了皮肤癌分类、深度学习、卷积神经网络(CNN)、黑色素瘤(检测)、数字生物标志物、组织病理学和全切片成像等组合搜索词。根据搜索结果,仅纳入了考虑将 AI 结果与临床医生进行直接比较且以诊断分类为主要目标的研究。

结果

共有 19 项读者研究符合纳入标准。其中,11 项基于 CNN 的方法解决了皮肤镜图像的分类问题;6 项专注于临床图像的分类,而 2 项皮肤病理学研究利用了数字化组织病理学全切片图像。

结论

所有 19 项纳入的研究均表明,基于 CNN 的分类器的表现优于或至少与临床医生相当。然而,几乎所有的研究都是在高度人为的环境中进行的,仅基于可疑病变的单一图像。此外,测试集主要由保留图像组成,并未代表在临床实践中遇到的所有患者人群和黑色素瘤亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验