Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA, 30024, USA.
SETI Institute, Mountain View, CA, 94043, USA.
Sci Rep. 2024 May 28;14(1):12197. doi: 10.1038/s41598-024-62261-2.
Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.
已知有能够在低至-25°C(嗜冷菌)和高达 122°C(嗜热菌)温度下代谢的极端微生物。了解极端条件下的生存能力与人类健康、生物技术应用以及我们在宇宙中其他地方寻找生命有关。了解蛋白质在环境极端条件下的稳定性和动态变化是这方面的一个重要因素。在这里,我们使用三种不同的核技术以及分子动力学计算来比较来自嗜冷和嗜热微生物的小型 Fe-S 蛋白- rubredoxins 的动力学,以量化 Fe 位点的运动。“对应状态”理论认为,来自不同嗜极生物的同源蛋白在其各自生物的最佳生长温度下具有可比的柔韧性。尽管“对应状态”预测在低温下工作的 rubredoxins 具有更大的柔韧性,但我们发现,在 4 到 300 K 之间,这些同源蛋白中 Fe 位点的动力学基本相同。