Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
Curr Nutr Rep. 2024 Sep;13(3):455-477. doi: 10.1007/s13668-024-00550-y. Epub 2024 May 28.
The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
肥胖的患病率持续稳步上升。虽然肥胖管理通常依赖于饮食和生活方式的改变,但个体对这些干预措施的反应差异很大。超重和肥胖的临床指南强调了个性化护理方法的重要性。本篇综述旨在强调精准营养在提供针对肥胖管理的定制干预措施方面的作用。
最近的技术进步扩大了我们检测肥胖相关基因多态性的能力,机器学习算法在分析复杂的基因组数据方面证明是至关重要的。机器学习算法还可以预测餐后血糖、甘油三酯和胰岛素水平,从而促进个性化饮食干预,并最终成功减肥。此外,鉴于遵守饮食建议是减肥成功的关键预测因素之一,采用更客观的饮食评估和监测方法可以提高长期持续的依从性。食物摄入的生物标志物为更客观的饮食评估提供了希望。承认肥胖的多因素性质,精准营养有望通过将饮食干预针对个体的遗传背景、肠道微生物群、代谢谱和行为模式来改变肥胖管理。然而,目前还没有足够的证据表明精准营养优于传统的饮食建议。将精准营养整合到常规临床实践中需要通过随机对照试验进一步验证,并积累更多的证据来加强其基础。