Suppr超能文献

血浆外泌体含有对肺癌诊断有价值的蛋白质生物标志物。

Plasma exosomes contain protein biomarkers valuable for the diagnosis of lung cancer.

作者信息

Liu Zhiqiang, Huang Hong, Ren Jing, Song Tingting, Ni Yinyun, Mao Shengqiang, Yang Ying, Liu Dan, Tang Huairong

机构信息

Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Discov Oncol. 2024 May 28;15(1):194. doi: 10.1007/s12672-024-01022-z.

Abstract

Accumulating evidence indicates that exosomal proteins are critical in diagnosing malignant tumors. To identify novel exosomal biomarkers for lung cancer diagnosis, we isolated plasma exosomes from 517 lung cancer patients and 168 healthy controls (NLs)-186 lung adenocarcinoma (LUAD) patients (screening (SN): 20, validation (VD): 166), 159 lung squamous carcinoma (LUSC) patients (SN: 20, VD: 139), 172 benign nodules (LUBN) patients (SN: 20, VD: 152) and 168 NLs (SN: 20, VD: 148)-and randomly assigned them to the SN or VD group. Proteomic analysis by LC-MS/MS and PRM were performed on all groups. The candidate humoral markers were evaluated and screened by a machine learning method. All selected biomarkers were identified in the VD groups. For LUAD, a 7-protein panel had AUCs of 97.9% and 87.6% in the training and test sets, respectively, and 89.5% for early LUAD. For LUSC, an 8-protein panel showed AUCs of 99.1% and 87.0% in the training and test sets and 92.3% for early LUSC. For LUAD + LUSC (LC), an 8-protein panel showed AUCs of 85.9% and 80.3% in the training and test sets and 87.1% for early LC diagnosis. The characteristics of the exosomal proteome make exosomes potential diagnostic tools.

摘要

越来越多的证据表明,外泌体蛋白在恶性肿瘤诊断中至关重要。为了鉴定用于肺癌诊断的新型外泌体生物标志物,我们从517例肺癌患者和168例健康对照者(NLs)——186例肺腺癌(LUAD)患者(筛查(SN):20例,验证(VD):166例)、159例肺鳞癌(LUSC)患者(SN:20例,VD:139例)、172例良性结节(LUBN)患者(SN:20例,VD:152例)和168例NLs(SN:20例,VD:148例)中分离出血浆外泌体,并将它们随机分配到SN组或VD组。对所有组进行了液相色谱-串联质谱(LC-MS/MS)和平行反应监测(PRM)的蛋白质组学分析。通过机器学习方法评估和筛选候选体液标志物。所有选定的生物标志物均在VD组中得到鉴定。对于LUAD,一个由7种蛋白质组成的检测panel在训练集和测试集的曲线下面积(AUC)分别为97.9%和87.6%,对于早期LUAD为89.5%。对于LUSC,一个由8种蛋白质组成的检测panel在训练集和测试集的AUC分别为99.1%和87.0%,对于早期LUSC为92.3%。对于LUAD + LUSC(LC),一个由8种蛋白质组成 的检测panel在训练集和测试集的AUC分别为85.9%和80.3%,对于早期LC诊断为87.1%。外泌体蛋白质组的特性使外泌体成为潜在的诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46dd/11133266/5502aade7c48/12672_2024_1022_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验