Varga Tamás
Bolyai Institute, University of Szeged, Szeged, Hungary.
National Laboratory for Health Security, Szeged, Hungary.
J Math Biol. 2024 Dec 15;90(1):6. doi: 10.1007/s00285-024-02170-0.
One of the central results of evolutionary matrix games is that a state corresponding to an evolutionarily stable strategy (ESS) is an asymptotically stable equilibrium point of the standard replicator dynamics. This relationship is crucial because it simplifies the analysis of dynamic phenomena through static inequalities. Recently, as an extension of classical evolutionary matrix games, matrix games under time constraints have been introduced (Garay et al. in J Theor Biol 415:1-12, 2017; Křivan and Cressman in J Theor Biol 416:199-207, 2017). In this model, after an interaction, players do not only receive a payoff but must also wait a certain time depending on their strategy before engaging in another interaction. This waiting period can significantly impact evolutionary outcomes. We found that while the aforementioned classical relationship holds for two-dimensional strategies in this model (Varga et al. in J Math Biol 80:743-774, 2020), it generally does not apply for three-dimensional strategies (Varga and Garay in Dyn Games Appl, 2024). To resolve this problem, we propose a generalization of the replicator dynamics that considers only individuals in active state, i.e., those not waiting, can interact and gain resources. We prove that using this generalized dynamics, the classical relationship holds true for matrix games under time constraints in any dimension: a state corresponding to an ESS is asymptotically stable. We believe this generalized replicator dynamics is more naturally aligned with the game theoretical model under time constraints than the classical form. It is important to note that this generalization reduces to the original replicator dynamics for classical matrix games.
进化矩阵博弈的核心成果之一是,对应于进化稳定策略(ESS)的状态是标准复制动态的渐近稳定平衡点。这种关系至关重要,因为它通过静态不等式简化了对动态现象的分析。最近,作为经典进化矩阵博弈的扩展,引入了时间约束下的矩阵博弈(加雷等人,《理论生物学杂志》415:1 - 12,2017;克里万和克雷斯曼,《理论生物学杂志》416:199 - 207,2017)。在这个模型中,一次互动后,参与者不仅会获得收益,还必须根据自己的策略等待一定时间才能进行另一次互动。这个等待期会显著影响进化结果。我们发现,虽然上述经典关系在该模型中对于二维策略成立(瓦尔加等人,《数学生物学杂志》80:743 - 774,2020),但一般不适用于三维策略(瓦尔加和加雷,《动态博弈与应用》,2024)。为了解决这个问题,我们提出了一种复制动态的推广形式,即只考虑处于活跃状态的个体,也就是说,那些不处于等待状态的个体可以进行互动并获取资源。我们证明,使用这种广义动态,经典关系在任何维度的时间约束下的矩阵博弈中都成立:对应于ESS的状态是渐近稳定的。我们认为这种广义复制动态比经典形式更自然地符合时间约束下的博弈理论模型。需要注意的是,这种推广对于经典矩阵博弈可简化为原始的复制动态。