Suppr超能文献

自主滑行:多足运动器的摩擦推进式游泳

Self-propulsion via slipping: Frictional swimming in multilegged locomotors.

机构信息

Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332.

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332.

出版信息

Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213698120. doi: 10.1073/pnas.2213698120. Epub 2023 Mar 10.

Abstract

Locomotion is typically studied either in continuous media where bodies and legs experience forces generated by the flowing medium or on solid substrates dominated by friction. In the former, centralized whole-body coordination is believed to facilitate appropriate slipping through the medium for propulsion. In the latter, slip is often assumed minimal and thus avoided via decentralized control schemes. We find in laboratory experiments that terrestrial locomotion of a meter-scale multisegmented/legged robophysical model resembles undulatory fluid swimming. Experiments varying waves of leg stepping and body bending reveal how these parameters result in effective terrestrial locomotion despite seemingly ineffective isotropic frictional contacts. Dissipation dominates over inertial effects in this macroscopic-scaled regime, resulting in essentially geometric locomotion on land akin to microscopic-scale swimming in fluids. Theoretical analysis demonstrates that the high-dimensional multisegmented/legged dynamics can be simplified to a centralized low-dimensional model, which reveals an effective resistive force theory with an acquired viscous drag anisotropy. We extend our low-dimensional, geometric analysis to illustrate how body undulation can aid performance in non-flat obstacle-rich terrains and also use the scheme to quantitatively model how body undulation affects performance of biological centipede locomotion (the desert centipede ) moving at relatively high speeds (∼0.5 body lengths/sec). Our results could facilitate control of multilegged robots in complex terradynamic scenarios.

摘要

运动通常在连续介质中进行,在连续介质中,身体和腿部会受到流动介质产生的力的作用,或者在以摩擦为主的固体基质上进行。在前一种情况下,集中式全身协调被认为有助于通过介质进行适当的滑动以推动前进。在后一种情况下,滑动通常被假设为最小,因此通过分散控制方案来避免。我们在实验室实验中发现,米级多节/腿机器人模型的地面运动类似于波动的流体游泳。通过改变腿部踏步和身体弯曲的波,实验揭示了这些参数如何导致有效的地面运动,尽管看似无效的各向同性摩擦接触。在这个宏观尺度的范围内,耗散主导了惯性效应,导致在陆地上的基本几何运动类似于微观尺度在流体中的游泳。理论分析表明,高维多节/腿动力学可以简化为集中的低维模型,揭示了一种有效的阻力理论,具有获得的粘性阻力各向异性。我们扩展了我们的低维、几何分析,以说明身体波动如何有助于在非平坦、障碍物丰富的地形中的性能,并且还使用该方案定量地模拟身体波动如何影响生物蜈蚣(沙漠蜈蚣)在相对较高速度(约 0.5 个身体长度/秒)下的运动性能。我们的结果可以促进在复杂的地形动态场景中控制多足机器人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/10089174/f579b330b205/pnas.2213698120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验