Muvaffak Asli, Coleman Kevin G
Oncology, GlaxoSmithKline, Cambridge, MA, United States.
Front Oncol. 2024 May 14;14:1380633. doi: 10.3389/fonc.2024.1380633. eCollection 2024.
Ataxia telangiectasia-mutated (ATM) kinase is a central regulator of the DNA damage response (DDR) signaling pathway, and its function is critical for the maintenance of genomic stability in cells that coordinate a network of cellular processes, including DNA replication, DNA repair, and cell cycle progression. ATM is frequently mutated in human cancers, and approximately 3% of lung cancers have biallelic mutations in ATM, i.e., including 3.5% of lung adenocarcinomas (LUAD) and 1.4% of lung squamous cell carcinomas (LUSC).
We investigated the potential of targeting the DDR pathway in lung cancer as a potential therapeutic approach. In this context, we examined whether ATM loss is synthetically lethal with niraparib monotherapy. This exploration involved the use of knockout (KO) isogenic cell lines containing homozygous (-/-) and heterozygous (+/-) generated via CRISPR/Cas9 gene knockout technology in DLD-1, a human colorectal adenocarcinoma cell line. Subsequently, we extended our investigation to non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) models for further validation of poly ADP-ribose polymerase inhibitor (PARPi) synthetic lethality in ATM mutant NSCLC models.
Here, we demonstared that biallelic deletion (-/-) in DLD-1 impairs homologous recombination (HR) repair function and sensitizes cells to the PARPi, niraparib. Niraparib also caused significant tumor regression in one-third of the NSCLC PDX models harboring deleterious biallelic ATM mutations. Loss of (-/-) was concomitantly associated with low BRCA1 and BRCA2 protein expression in both the (-/-) DLD-1 cell line and PARPi-sensitive ATM mutant NSCLC PDX models, suggesting a downstream effect on the impairment of HR-mediated DNA checkpoint signaling. Further analysis revealed that loss of ATM led to inhibition of phosphorylation of MRN (Mre11-Rad50-NBS1) complex proteins, which are required for ATM-mediated downstream phosphorylation of p53, BRCA1, and CHK2.
Taken together, our findings highlight that the synthetic lethality of niraparib in ATM-deficient tumors can be regulated through a subsequent effect on the modulation of BRCA1/2 expression and its effect on HR function.
共济失调毛细血管扩张症突变(ATM)激酶是DNA损伤反应(DDR)信号通路的核心调节因子,其功能对于维持细胞内基因组稳定性至关重要,该过程协调包括DNA复制、DNA修复和细胞周期进程在内的一系列细胞过程。ATM在人类癌症中经常发生突变,约3%的肺癌存在ATM双等位基因突变,即包括3.5%的肺腺癌(LUAD)和1.4%的肺鳞状细胞癌(LUSC)。
我们研究了将靶向DDR通路作为肺癌潜在治疗方法的可能性。在此背景下,我们检测了ATM缺失与尼拉帕利单药治疗是否存在合成致死效应。该研究使用了通过CRISPR/Cas9基因敲除技术在人结肠腺癌细胞系DLD-1中构建的纯合(-/-)和杂合(+/-)敲除(KO)同基因细胞系。随后,我们将研究扩展至非小细胞肺癌(NSCLC)患者来源的异种移植(PDX)模型,以进一步验证聚ADP-核糖聚合酶抑制剂(PARPi)在ATM突变NSCLC模型中的合成致死效应。
在此,我们证明DLD-1中的双等位基因缺失(-/-)会损害同源重组(HR)修复功能,并使细胞对PARPi尼拉帕利敏感。尼拉帕利还使三分之一携带有害双等位基因ATM突变的NSCLC PDX模型中的肿瘤显著消退。在(-/-)DLD-1细胞系和PARPi敏感的ATM突变NSCLC PDX模型中,(-/-)缺失均与低水平的BRCA1和BRCA2蛋白表达相关,提示对HR介导的DNA检查点信号通路损伤存在下游效应。进一步分析显示,ATM缺失导致MRN(Mre11-Rad50-NBS1)复合体蛋白磷酸化受到抑制,而该复合体蛋白是ATM介导的p53、BRCA1和CHK2下游磷酸化所必需的。
综上所述,我们的研究结果表明,尼拉帕利在ATM缺陷肿瘤中的合成致死效应可通过对BRCA1/2表达的调节及其对HR功能的影响来调控。