Naseri Suhit, Shukla Samarth, Hiwale K M, Jagtap Miheer M, Gadkari Pravin, Gupta Kartik, Deshmukh Mamta, Sagar Shakti
Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND.
Radiation Oncology, Delhi State Cancer Institute, Delhi, IND.
Cureus. 2024 Apr 27;16(4):e59171. doi: 10.7759/cureus.59171. eCollection 2024 Apr.
Colorectal carcinoma, a prevalent and deadly malignancy, necessitates precise histopathological assessment for effective diagnosis and prognosis. Artificial intelligence (AI) emerges as a transformative force in this realm, offering innovative solutions to enhance traditional histopathological methods. This narrative review explores AI's pioneering role in colorectal carcinoma histopathology, encompassing its evolution, techniques, and advancements. AI algorithms, notably machine learning and deep learning, have revolutionized image analysis, facilitating accurate diagnosis and prognosis prediction. Furthermore, AI-driven histopathological analysis unveils potential biomarkers and therapeutic targets, heralding personalized treatment approaches. Despite its promise, challenges persist, including data quality, interpretability, and integration. Collaborative efforts among researchers, clinicians, and AI developers are imperative to surmount these hurdles and realize AI's full potential in colorectal carcinoma care. This review underscores AI's transformative impact and implications for future oncology research, clinical practice, and interdisciplinary collaboration.
结直肠癌是一种常见且致命的恶性肿瘤,需要进行精确的组织病理学评估以实现有效的诊断和预后判断。人工智能(AI)在这一领域成为一股变革力量,为改进传统组织病理学方法提供创新解决方案。本叙述性综述探讨了AI在结直肠癌组织病理学中的开创性作用,包括其发展、技术和进展。AI算法,尤其是机器学习和深度学习,已经彻底改变了图像分析,有助于准确的诊断和预后预测。此外,AI驱动的组织病理学分析揭示了潜在的生物标志物和治疗靶点,预示着个性化治疗方法的出现。尽管前景广阔,但挑战依然存在,包括数据质量、可解释性和整合。研究人员、临床医生和AI开发者之间的合作努力对于克服这些障碍并实现AI在结直肠癌护理中的全部潜力至关重要。本综述强调了AI的变革性影响及其对未来肿瘤学研究、临床实践和跨学科合作的意义。
Diagn Pathol. 2024-2-22
Otolaryngol Clin North Am. 2024-10
J Multidiscip Healthc. 2024-8-15
Bioengineering (Basel). 2024-3-29
World J Gastrointest Oncol. 2025-3-15
Diagnostics (Basel). 2024-3-1
Health Serv Res Manag Epidemiol. 2024-3-5
NPJ Digit Med. 2024-3-1
J Chem Inf Model. 2024-5-27
Diagn Pathol. 2023-10-3
BMC Med Educ. 2023-9-22
Diagnostics (Basel). 2023-8-25