Qing Haitao, Chi Yinding, Hong Yaoye, Zhao Yao, Qi Fangjie, Li Yanbin, Yin Jie
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
Adv Mater. 2024 Sep;36(36):e2402517. doi: 10.1002/adma.202402517. Epub 2024 Jun 4.
Miniature shape-morphing soft actuators driven by external stimuli and fluidic pressure hold great promise in morphing matter and small-scale soft robotics. However, it remains challenging to achieve both rich shape morphing and shape locking in a fast and controlled way due to the limitations of actuation reversibility and fabrication. Here, fully 3D-printed, sub-millimeter thin-plate-like miniature soft hydraulic actuators with shape memory effect (SME) for programable fast shape morphing and shape locking, are reported. It combines commercial high-resolution multi-material 3D printing of stiff shape memory polymers (SMPs) and soft elastomers and direct printing of microfluidic channels and 2D/3D channel networks embedded in elastomers in a single print run. Leveraging spatial patterning of hybrid compositions and expansion heterogeneity of microfluidic channel networks for versatile hydraulically actuated shape morphing, including circular, wavy, helical, saddle, and warping shapes with various curvatures, are demonstrated. The morphed shapes can be temporarily locked and recover to their original planar forms repeatedly by activating SME of the SMPs. Utilizing the fast shape morphing and locking in the miniature actuators, their potential applications in non-invasive manipulation of small-scale objects and fragile living organisms, multimodal entanglement grasping, and energy-saving manipulators, are demonstrated.
由外部刺激和流体压力驱动的微型形状变形软致动器在变形材料和小型软机器人领域具有巨大潜力。然而,由于驱动可逆性和制造方面的限制,以快速且可控的方式实现丰富的形状变形和形状锁定仍然具有挑战性。在此,报道了具有形状记忆效应(SME)的全3D打印、亚毫米薄板状微型软液压致动器,用于可编程的快速形状变形和形状锁定。它结合了商业高分辨率多材料3D打印硬质形状记忆聚合物(SMP)和软弹性体,以及在一次打印过程中直接打印微流体通道和嵌入弹性体中的2D/3D通道网络。利用混合成分的空间图案化和微流体通道网络的膨胀不均匀性,实现了多种液压驱动的形状变形,包括具有各种曲率的圆形、波浪形、螺旋形、鞍形和翘曲形状。通过激活SMP的SME,变形后的形状可以暂时锁定并反复恢复到其原始平面形式。利用微型致动器中的快速形状变形和锁定,展示了它们在小尺度物体和脆弱生物体的非侵入性操作、多模态缠绕抓取和节能操纵器方面的潜在应用。