Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan.
Nanoscale. 2024 Jun 27;16(25):11802-11824. doi: 10.1039/d4nr01195c.
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
近年来,医学成像技术取得了诸多进展,涌现出磁共振成像(MRI)、计算机断层扫描(CT)、正电子发射断层扫描(PET)和超声等多种技术,这些技术都提高了诊断能力。最近,磁粒子成像(MPI)作为一种快速发展的成像方式,对医学诊断和治疗具有深远的意义。MPI 通过直接检测磁性示踪剂的磁化响应,在灵敏度和可量化性方面超越了传统成像方式,特别是在干细胞追踪应用中。本文全面综述了 MPI 的基本原理、仪器设备、磁性纳米粒子示踪剂设计以及应用,深入探讨了最新进展和未来方向。新型示踪剂设计,如锌掺杂氧化铁纳米粒子(Zn-IONPs),具有增强的性能,拓宽了 MPI 的应用范围。空间编码策略、扫描轨迹和仪器设备创新得到了阐述,揭示了 MPI 发展的技术基础。此外,集成机器学习和深度学习方法增强了 MPI 的图像处理能力,为更高效的分割、量化和重建铺平了道路。超顺磁性氧化铁纳米粒子链(SFMIOs)作为新型 MPI 示踪剂的潜力进一步提高了成像质量,扩大了临床应用范围,突显了这种新兴成像方式的广阔前景。
IEEE Trans Med Imaging. 2015-5
J Phys Chem Lett. 2015-7-2
Mol Imaging Biol. 2025-8-6
J Phys D Appl Phys. 2025-7-28
Mil Med Res. 2025-4-27
ACS Appl Mater Interfaces. 2025-4-9