Azizi Ebrahim, Li Changzhi, Gómez-Pastora Jenifer, He Rui, Wu Kai
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
J Phys D Appl Phys. 2025 Jul 28;58(30):305002. doi: 10.1088/1361-6463/adeea2. Epub 2025 Jul 22.
Magnetic particle imaging (MPI) is a new tomographic imaging technique that can quantitatively correlate MPI signal intensity to the spatial distribution of magnetic nanoparticle (MNP) tracers. Due to its non-ionizing nature, low background signal from biological matrices, high contrast, and relatively good spatial and temporal resolution, MPI has been actively studied and applied to biomedical imaging and is expected to reach the clinical stage soon. To further improve the spatial resolution limit in MPI, researchers have been working towards optimizing the image reconstruction algorithms, magnetic field profiles, tracer designs, circuitry, etc. Recent studies reported that lower excitation field amplitudes can improve spatial resolution, though this comes at the expense of lower MPI signal and tracer sensitivity. Different excitation field profiles directly affect the collective dynamic magnetizations of tracers recorded by the receiver coil in MPI. However, there is a gap between understanding the relaxation dynamics of MNP tracers, the signal-to-noise ratio (SNR) of MPI signals, and the MPI spatial resolution. In this work, we used a stochastic Langevin equation with coupled Brownian and Néel relaxations to model the magnetic dynamics of different MNP tracers subjected to varying excitation fields. We analyzed the collective time-domain dynamic magnetizations (- curves), magnetic-field hysteresis loops ( curves), point spread functions (PSFs), higher harmonics, and SNR of the third harmonic to understand how the excitation field affects MPI performance. We employed Full Width at Half Maximum and SNR as evaluation metrics for imaging resolution and signal quality, respectively. Our study supports previous findings on the impact of excitation field amplitude on MPI performance while offering more profound insights into the interplay of nonequilibrium Néel and Brownian relaxation, tracer core size, and SNR.
磁粒子成像(MPI)是一种新型断层成像技术,它能够将MPI信号强度与磁性纳米颗粒(MNP)示踪剂的空间分布进行定量关联。由于其非电离性质、生物基质的低背景信号、高对比度以及相对良好的空间和时间分辨率,MPI已得到积极研究并应用于生物医学成像,有望很快进入临床阶段。为了进一步提高MPI中的空间分辨率极限,研究人员一直在致力于优化图像重建算法、磁场分布、示踪剂设计、电路等。最近的研究报告称,较低的激发场幅度可以提高空间分辨率,不过这是以较低的MPI信号和示踪剂灵敏度为代价的。不同的激发场分布直接影响MPI中接收线圈记录的示踪剂的集体动态磁化。然而,在理解MNP示踪剂的弛豫动力学、MPI信号的信噪比(SNR)和MPI空间分辨率之间存在差距。在这项工作中,我们使用了一个具有耦合布朗弛豫和奈尔弛豫的随机朗之万方程来模拟不同MNP示踪剂在变化的激发场下的磁动力学。我们分析了集体时域动态磁化(-曲线)、磁场磁滞回线(曲线)、点扩散函数(PSF)、高次谐波以及三次谐波的SNR,以了解激发场如何影响MPI性能。我们分别采用半高宽和SNR作为成像分辨率和信号质量的评估指标。我们的研究支持了先前关于激发场幅度对MPI性能影响的研究结果,同时对非平衡奈尔弛豫和布朗弛豫、示踪剂核心尺寸和SNR之间的相互作用提供了更深刻的见解。
J Phys D Appl Phys. 2025-7-28
J Magn Magn Mater. 2025-6-15
Phys Med Biol. 2025-2-4
2025-1
Cochrane Database Syst Rev. 2023-2-8
Cochrane Database Syst Rev. 2015-6-23
Cochrane Database Syst Rev. 2022-5-20
Nanotechnology. 2024-11-5
ACS Appl Mater Interfaces. 2024-10-9
Phys Med Biol. 2022-6-10
IEEE Trans Med Imaging. 2020-5
Nanotechnology. 2019-9-6
AJNR Am J Neuroradiol. 2019-1-17