文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

激励场幅度对磁粒子成像性能的影响:一项建模研究。

Effects of excitation field amplitude on magnetic particle imaging performance: a modeling study.

作者信息

Azizi Ebrahim, Li Changzhi, Gómez-Pastora Jenifer, He Rui, Wu Kai

机构信息

Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.

Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.

出版信息

J Phys D Appl Phys. 2025 Jul 28;58(30):305002. doi: 10.1088/1361-6463/adeea2. Epub 2025 Jul 22.


DOI:10.1088/1361-6463/adeea2
PMID:40703957
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12281415/
Abstract

Magnetic particle imaging (MPI) is a new tomographic imaging technique that can quantitatively correlate MPI signal intensity to the spatial distribution of magnetic nanoparticle (MNP) tracers. Due to its non-ionizing nature, low background signal from biological matrices, high contrast, and relatively good spatial and temporal resolution, MPI has been actively studied and applied to biomedical imaging and is expected to reach the clinical stage soon. To further improve the spatial resolution limit in MPI, researchers have been working towards optimizing the image reconstruction algorithms, magnetic field profiles, tracer designs, circuitry, etc. Recent studies reported that lower excitation field amplitudes can improve spatial resolution, though this comes at the expense of lower MPI signal and tracer sensitivity. Different excitation field profiles directly affect the collective dynamic magnetizations of tracers recorded by the receiver coil in MPI. However, there is a gap between understanding the relaxation dynamics of MNP tracers, the signal-to-noise ratio (SNR) of MPI signals, and the MPI spatial resolution. In this work, we used a stochastic Langevin equation with coupled Brownian and Néel relaxations to model the magnetic dynamics of different MNP tracers subjected to varying excitation fields. We analyzed the collective time-domain dynamic magnetizations (- curves), magnetic-field hysteresis loops ( curves), point spread functions (PSFs), higher harmonics, and SNR of the third harmonic to understand how the excitation field affects MPI performance. We employed Full Width at Half Maximum and SNR as evaluation metrics for imaging resolution and signal quality, respectively. Our study supports previous findings on the impact of excitation field amplitude on MPI performance while offering more profound insights into the interplay of nonequilibrium Néel and Brownian relaxation, tracer core size, and SNR.

摘要

磁粒子成像(MPI)是一种新型断层成像技术,它能够将MPI信号强度与磁性纳米颗粒(MNP)示踪剂的空间分布进行定量关联。由于其非电离性质、生物基质的低背景信号、高对比度以及相对良好的空间和时间分辨率,MPI已得到积极研究并应用于生物医学成像,有望很快进入临床阶段。为了进一步提高MPI中的空间分辨率极限,研究人员一直在致力于优化图像重建算法、磁场分布、示踪剂设计、电路等。最近的研究报告称,较低的激发场幅度可以提高空间分辨率,不过这是以较低的MPI信号和示踪剂灵敏度为代价的。不同的激发场分布直接影响MPI中接收线圈记录的示踪剂的集体动态磁化。然而,在理解MNP示踪剂的弛豫动力学、MPI信号的信噪比(SNR)和MPI空间分辨率之间存在差距。在这项工作中,我们使用了一个具有耦合布朗弛豫和奈尔弛豫的随机朗之万方程来模拟不同MNP示踪剂在变化的激发场下的磁动力学。我们分析了集体时域动态磁化(-曲线)、磁场磁滞回线(曲线)、点扩散函数(PSF)、高次谐波以及三次谐波的SNR,以了解激发场如何影响MPI性能。我们分别采用半高宽和SNR作为成像分辨率和信号质量的评估指标。我们的研究支持了先前关于激发场幅度对MPI性能影响的研究结果,同时对非平衡奈尔弛豫和布朗弛豫、示踪剂核心尺寸和SNR之间的相互作用提供了更深刻的见解。

相似文献

[1]
Effects of excitation field amplitude on magnetic particle imaging performance: a modeling study.

J Phys D Appl Phys. 2025-7-28

[2]
Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging.

Comput Biol Med. 2024-8

[3]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[4]
Microfluidic formulation and characterization of size-tunable microparticle magnetic particle imaging tracers.

J Magn Magn Mater. 2025-6-15

[5]
Magnetic particle imaging resolution needed for magnetic hyperthermia treatment planning: a sensitivity analysis.

Front Therm Eng. 2025

[6]
On the partial volume effect in magnetic particle imaging.

Phys Med Biol. 2025-2-4

[7]
Short-Term Memory Impairment

2025-1

[8]
Education support services for improving school engagement and academic performance of children and adolescents with a chronic health condition.

Cochrane Database Syst Rev. 2023-2-8

[9]
Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia.

Cochrane Database Syst Rev. 2015-6-23

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[2]
Strongly Interacting Nanoferrites for Magnetic Particle Imaging and Spatially Resolved Thermometry.

ACS Appl Mater Interfaces. 2024-10-9

[3]
Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications.

Nanoscale. 2024-6-27

[4]
Deep learning for improving the spatial resolution of magnetic particle imaging.

Phys Med Biol. 2022-6-10

[5]
Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia.

ACS Nano. 2020-7-28

[6]
Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine.

Adv Mater. 2021-6

[7]
Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2020-5

[8]
Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles.

Phys Med Biol. 2020-1-17

[9]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[10]
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging.

AJNR Am J Neuroradiol. 2019-1-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索