Computational Mechanics & Experimental Biomechanics Lab, School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Ramat Aviv 69978, Israel.
Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
Clin Biomech (Bristol). 2024 Jun;116:106265. doi: 10.1016/j.clinbiomech.2024.106265. Epub 2024 May 16.
Metastatic femoral tumors may lead to pathological fractures during daily activities. A CT-based finite element analysis of a patient's femurs was shown to assist orthopedic surgeons in making informed decisions about the risk of fracture and the need for a prophylactic fixation. Improving the accuracy of such analyses ruqires an automatic and accurate segmentation of the tumors and their automatic inclusion in the finite element model. We present herein a deep learning algorithm (nnU-Net) to automatically segment lytic tumors within the femur.
A dataset consisting of fifty CT scans of patients with manually annotated femoral tumors was created. Forty of them, chosen randomly, were used for training the nnU-Net, while the remaining ten CT scans were used for testing. The deep learning model's performance was compared to two experienced radiologists.
The proposed algorithm outperformed the current state-of-the-art solutions, achieving dice similarity scores of 0.67 and 0.68 on the test data when compared to two experienced radiologists, while the dice similarity score for inter-individual variability between the radiologists was 0.73.
The automatic algorithm may segment lytic femoral tumors in CT scans as accurately as experienced radiologists with similar dice similarity scores. The influence of the realistic tumors inclusion in an autonomous finite element algorithm is presented in (Rachmil et al., "The Influence of Femoral Lytic Tumors Segmentation on Autonomous Finite Element Analyses", Clinical Biomechanics, 112, paper 106192, (2024)).
转移性股骨肿瘤可能会导致患者在日常活动中发生病理性骨折。对患者股骨进行基于 CT 的有限元分析,可帮助骨科医生在骨折风险和预防性固定需求方面做出明智决策。为了提高此类分析的准确性,需要自动且准确地对肿瘤进行分割,并将其自动纳入有限元模型。我们在此介绍一种深度学习算法(nnU-Net),以自动分割股骨中的溶骨性肿瘤。
创建了一个包含五十例经手动标注股骨肿瘤的 CT 扫描的数据集。其中四十例随机选择用于训练 nnU-Net,而其余十例 CT 扫描用于测试。将深度学习模型的性能与两位有经验的放射科医生进行了比较。
与两位有经验的放射科医生相比,所提出的算法在测试数据上的 Dice 相似性评分分别达到了 0.67 和 0.68,优于当前的最先进解决方案,而放射科医生之间的个体间变异性的 Dice 相似性评分为 0.73。
自动算法可以像有经验的放射科医生一样准确地分割 CT 扫描中的溶骨性股骨肿瘤,具有相似的 Dice 相似性评分。在自主有限元算法中纳入真实肿瘤的影响在(Rachmil 等人,“股骨溶骨性肿瘤分割对自主有限元分析的影响”,临床生物力学,112,第 106192 页,(2024 年))中进行了介绍。