Suppr超能文献

BOA:一种基于 CT 的身体和器官分析系统,供放射科医生在床边使用。

BOA: A CT-Based Body and Organ Analysis for Radiologists at the Point of Care.

机构信息

From the Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany (J.H., G.B., V.P., B.M.S., S.K., L.K., N.v.L., L.U., M.F., F.N., R.H.); and Institute of Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H., G.B., V.P., S.K., L.U., M.F., F.N., R.H.).

出版信息

Invest Radiol. 2024 Jun 1;59(6):433-441. doi: 10.1097/RLI.0000000000001040. Epub 2023 Nov 21.

Abstract

PURPOSE

The study aimed to develop the open-source body and organ analysis (BOA), a comprehensive computed tomography (CT) image segmentation algorithm with a focus on workflow integration.

METHODS

The BOA combines 2 segmentation algorithms: body composition analysis (BCA) and TotalSegmentator. The BCA was trained with the nnU-Net framework using a dataset including 300 CT examinations. The CTs were manually annotated with 11 semantic body regions: subcutaneous tissue, muscle, bone, abdominal cavity, thoracic cavity, glands, mediastinum, pericardium, breast implant, brain, and spinal cord. The models were trained using 5-fold cross-validation, and at inference time, an ensemble was used. Afterward, the segmentation efficiency was evaluated on a separate test set comprising 60 CT scans. In a postprocessing step, a tissue segmentation (muscle, subcutaneous adipose tissue, visceral adipose tissue, intermuscular adipose tissue, epicardial adipose tissue, and paracardial adipose tissue) is created by subclassifying the body regions. The BOA combines this algorithm and the open-source segmentation software TotalSegmentator to have an all-in-one comprehensive selection of segmentations. In addition, it integrates into clinical workflows as a DICOM node-triggered service using the open-source Orthanc research PACS (Picture Archiving and Communication System) server to make the automated segmentation algorithms available to clinicians. The BCA model's performance was evaluated using the Sørensen-Dice score. Finally, the segmentations from the 3 different tools (BCA, TotalSegmentator, and BOA) were compared by assessing the overall percentage of the segmented human body on a separate cohort of 150 whole-body CT scans.

RESULTS

The results showed that the BCA outperformed the previous publication, achieving a higher Sørensen-Dice score for the previously existing classes, including subcutaneous tissue (0.971 vs 0.962), muscle (0.959 vs 0.933), abdominal cavity (0.983 vs 0.973), thoracic cavity (0.982 vs 0.965), bone (0.961 vs 0.942), and an overall good segmentation efficiency for newly introduced classes: brain (0.985), breast implant (0.943), glands (0.766), mediastinum (0.880), pericardium (0.964), and spinal cord (0.896). All in all, it achieved a 0.935 average Sørensen-Dice score, which is comparable to the one of the TotalSegmentator (0.94). The TotalSegmentator had a mean voxel body coverage of 31% ± 6%, whereas BCA had a coverage of 75% ± 6% and BOA achieved 93% ± 2%.

CONCLUSIONS

The open-source BOA merges different segmentation algorithms with a focus on workflow integration through DICOM node integration, offering a comprehensive body segmentation in CT images with a high coverage of the body volume.

摘要

目的

本研究旨在开发开源的身体和器官分析(BOA),这是一种专注于工作流程集成的全面计算机断层扫描(CT)图像分割算法。

方法

BOA 结合了 2 种分割算法:身体成分分析(BCA)和 TotalSegmentator。BCA 使用包括 300 次 CT 检查的数据集,在 nnU-Net 框架中进行训练。CT 被手动标记为 11 个语义身体区域:皮下组织、肌肉、骨骼、腹腔、胸腔、腺体、纵隔、心包、乳房植入物、大脑和脊髓。模型使用 5 折交叉验证进行训练,在推理时使用集成。之后,在一个包含 60 次 CT 扫描的独立测试集上评估分割效率。在后处理步骤中,通过对身体区域进行子类划分,创建一个组织分割(肌肉、皮下脂肪组织、内脏脂肪组织、肌肉间脂肪组织、心外膜脂肪组织和心包脂肪组织)。BOA 将这种算法与开源分割软件 TotalSegmentator 相结合,形成了全面的综合分割选择。此外,它作为一个基于 DICOM 节点触发的服务集成到临床工作流程中,使用开源 Orthanc 研究型 PACS(图片存档和通信系统)服务器使自动分割算法可供临床医生使用。使用 Sørensen-Dice 分数评估 BCA 模型的性能。最后,通过评估在 150 次全身 CT 扫描的独立队列上分割的人体总体百分比,比较了 3 种不同工具(BCA、TotalSegmentator 和 BOA)的分割结果。

结果

结果表明,BCA 优于先前的出版物,在前存在的类别中获得了更高的 Sørensen-Dice 分数,包括皮下组织(0.971 比 0.962)、肌肉(0.959 比 0.933)、腹腔(0.983 比 0.973)、胸腔(0.982 比 0.965)、骨骼(0.961 比 0.942),以及对新引入的类别具有良好的整体分割效率:大脑(0.985)、乳房植入物(0.943)、腺体(0.766)、纵隔(0.880)、心包(0.964)和脊髓(0.896)。总的来说,它的平均 Sørensen-Dice 得分为 0.935,与 TotalSegmentator(0.94)相当。TotalSegmentator 的平均体素覆盖率为 31%±6%,而 BCA 的覆盖率为 75%±6%,BOA 的覆盖率为 93%±2%。

结论

开源的 BOA 结合了不同的分割算法,通过 DICOM 节点集成专注于工作流程集成,提供了具有高体积覆盖的 CT 图像中的全面身体分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验