Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
Curr Biol. 2024 Jun 17;34(12):2728-2738.e6. doi: 10.1016/j.cub.2024.04.079. Epub 2024 May 28.
The mitochondrial proteome is comprised of approximately 1,100 proteins, all but 12 of which are encoded by the nuclear genome in C. elegans. The expression of nuclear-encoded mitochondrial proteins varies widely across cell lineages and metabolic states, but the factors that specify these programs are not known. Here, we identify mutations in two nuclear-localized mRNA processing proteins, CMTR1/CMTR-1 and SRRT/ARS2/SRRT-1, which we show act via the same mechanism to rescue the mitochondrial complex I mutant NDUFS2/gas-1(fc21). CMTR-1 is an FtsJ-family RNA methyltransferase that, in mammals, 2'-O-methylates the first nucleotide 3' to the mRNA CAP to promote RNA stability and translation. The mutations isolated in cmtr-1 are dominant and lie exclusively in the regulatory G-patch domain. SRRT-1 is an RNA binding partner of the nuclear cap-binding complex and determines mRNA transcript fate. We show that cmtr-1 and srrt-1 mutations activate embryonic expression of NDUFS2/nduf-2.2, a paralog of NDUFS2/gas-1 normally expressed only in dopaminergic neurons, and that nduf-2.2 is necessary for the complex I rescue by the cmtr-1 G-patch mutant. Additionally, we find that loss of the cmtr-1 G-patch domain cause ectopic localization of CMTR-1 protein to processing bodies (P bodies), phase-separated organelles involved in mRNA storage and decay. P-body localization of the G-patch mutant CMTR-1 contributes to the rescue of the hyperoxia sensitivity of the NDUFS2/gas-1 mutant. This study suggests that mRNA methylation at P bodies may control nduf-2.2 gene expression, with broader implications for how the mitochondrial proteome is translationally remodeled in the face of tissue-specific metabolic requirements and stress.
线粒体蛋白质组由大约 1100 种蛋白质组成,其中除了 12 种之外,其余的都是由线虫的核基因组编码的。核编码的线粒体蛋白质在细胞谱系和代谢状态之间的表达差异很大,但指定这些程序的因素尚不清楚。在这里,我们鉴定了两个定位于核内的 mRNA 处理蛋白,CMTR1/CMTR-1 和 SRRT/ARS2/SRRT-1 的突变,我们表明它们通过相同的机制作用于线粒体复合物 I 突变体 NDUFS2/gas-1(fc21)。CMTR-1 是一种 FtsJ 家族的 RNA 甲基转移酶,在哺乳动物中,它对 mRNA 的 CAP 前的第一个核苷酸进行 2'-O-甲基化,以促进 RNA 的稳定性和翻译。在 cmtr-1 中分离出的突变是显性的,并且仅位于调节性 G 补丁结构域中。SRRT-1 是核帽结合复合物的 RNA 结合伴侣,并决定 mRNA 转录本的命运。我们表明,cmtr-1 和 srrt-1 突变激活了 NDUFS2/nduf-2.2 的胚胎表达,nduf-2.2 是 NDUFS2/gas-1 的一个旁系同源物,通常仅在多巴胺能神经元中表达,并且 nduf-2.2 是 cmtr-1 G 补丁突变体对复合物 I 的拯救所必需的。此外,我们发现 cmtr-1 G 补丁结构域的缺失导致 CMTR-1 蛋白异位定位到处理体(P 体),这是一种涉及 mRNA 储存和降解的相分离细胞器。G 补丁突变体 CMTR-1 在 P 体中的定位有助于拯救 NDUFS2/gas-1 突变体的高氧敏感性。这项研究表明,P 体中的 mRNA 甲基化可能控制 nduf-2.2 基因的表达,这对如何根据组织特异性代谢需求和应激来重塑线粒体蛋白质组具有更广泛的意义。