Utah Data Coordinating Center, University of Utah, Salt Lake City, UT 84108, USA.
Utah Data Coordinating Center, University of Utah, Salt Lake City, UT 84108, USA.
Contemp Clin Trials. 2024 Aug;143:107581. doi: 10.1016/j.cct.2024.107581. Epub 2024 May 27.
Clinical trial monitoring is evolving from labor-intensive to targeted approaches. The traditional 100% Source Data Monitoring (SDM) approach fails to prioritize data by significance, diverting attention from critical elements. Despite regulatory guidance on Risk-Based Monitoring (RBM), its widespread implementation has been slow.
Our study teams assess the study's overall risk, document heightened and critical risks, and create a study-specific risk-based monitoring plan, integrating SDM and Central Data Monitoring (CDM). SDM combines a fixed list of pre-identified variables and a list of randomly identified variables to monitor. Identifying variables follows a two-step approach: first, a random sample of participants is selected, second, a random set of variables for each participant selected is identified. Sampling weights prioritize critical variables. Regular team meetings are held to discuss and compile significant findings into a Study Monitoring Report.
We present a random SDM sample and a Study Monitoring Report. The random SDM output includes a look-up table for selected database elements. The report provides a holistic view of the study issues and overall health.
The proposed random sampling method is used to monitor a representative set of critical variables, while the Study Monitoring Report is written to summarize significant monitoring findings and data trends. The report allows the sponsor to assess the current status of the study and data effectively. Communicating and sharing emerging insights facilitates timely adjustments of future monitoring activities, optimizing efficiencies, and study outcomes.
临床试验监测正从劳动密集型向有针对性的方法转变。传统的 100%源数据监测(SDM)方法未能按重要性对数据进行优先排序,从而分散了对关键要素的注意力。尽管有关于基于风险的监测(RBM)的监管指导,但它的广泛实施一直很缓慢。
我们的研究团队评估研究的总体风险,记录高风险和关键风险,并创建特定于研究的基于风险的监测计划,整合 SDM 和中央数据监测(CDM)。SDM 结合了预先确定的变量固定列表和随机确定的变量列表来进行监测。识别变量遵循两步法:首先,选择参与者的随机样本,其次,为每个参与者选择随机变量集。抽样权重优先考虑关键变量。定期举行团队会议,讨论并将重要发现汇编成研究监测报告。
我们展示了一个随机的 SDM 样本和一个研究监测报告。随机 SDM 的输出包括一个用于选定数据库元素的查找表。该报告提供了研究问题和整体健康状况的全面视图。
拟议的随机抽样方法用于监测一组具有代表性的关键变量,而研究监测报告则用于总结重要的监测发现和数据趋势。该报告使赞助商能够有效地评估研究和数据的当前状态。沟通和分享新出现的见解有助于及时调整未来的监测活动,优化效率和研究结果。