Huang Zhiheng, Bai Yunfei, Zhao Yanchong, Liu Le, Zhao Xuan, Wu Jiangbin, Watanabe Kenji, Taniguchi Takashi, Yang Wei, Shi Dongxia, Xu Yang, Zhang Tiantian, Zhang Qingming, Tan Ping-Heng, Sun Zhipei, Meng Sheng, Wang Yaxian, Du Luojun, Zhang Guangyu
Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2024 May 29;15(1):4586. doi: 10.1038/s41467-024-48992-w.
Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2H-MoS. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.
斯塔克效应是磁塞曼效应的电场类似物,是现代物理学中著名的现象之一,并在电子学、光电子学以及量子技术等新兴应用中具有吸引力。虽然在凝聚态物质中它仅在激子方面取得了进展,但其他集体激发是否能表现出斯塔克效应仍不清楚。在此,我们报告了在双层2H-MoS二维量子系统中观察到声子斯塔克效应。纵向声学声子随外加电场线性红移,并且可以在约1太赫兹范围内调谐,证明了声子的巨大斯塔克效应。结合多体从头算计算,我们发现观察到的声子斯塔克效应根本上源于声子与层间激子(IXs)之间的强耦合。此外,还发现对于红外活性声子A,IX介导的电声子强度调制高达约1200%。我们的结果揭示了奇异的声子斯塔克效应以及通过IX介导机制实现的有效声子工程,有望带来大量令人兴奋的多体物理和潜在的技术创新。