Domaretskiy Daniil, Philippi Marc, Gibertini Marco, Ubrig Nicolas, Gutiérrez-Lezama Ignacio, Morpurgo Alberto F
Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland.
Group of Applied Physics, University of Geneva, Geneva, Switzerland.
Nat Nanotechnol. 2022 Oct;17(10):1078-1083. doi: 10.1038/s41565-022-01183-4. Epub 2022 Aug 11.
Perpendicular electric fields can tune the electronic band structure of atomically thin semiconductors. In bilayer graphene, which is an intrinsic zero-gap semiconductor, a perpendicular electric field opens a finite bandgap. So far, however, the same principle could not be applied to control the properties of a broader class of 2D materials because the required electric fields are beyond reach in current devices. To overcome this limitation, we design double ionic gated transistors that enable the application of large electric fields of up to 3 V nm. Using such devices, we continuously suppress the bandgap of few-layer semiconducting transition metal dichalcogenides (that is, bilayer to heptalayer WSe) from 1.6 V to zero. Our results illustrate an excellent level of control of the band structure of 2D semiconductors.
垂直电场可以调节原子级薄半导体的电子能带结构。在双层石墨烯(一种本征零带隙半导体)中,垂直电场会打开一个有限的带隙。然而,到目前为止,同样的原理无法应用于控制更广泛的二维材料的特性,因为当前器件中所需的电场无法实现。为了克服这一限制,我们设计了双离子门控晶体管,能够施加高达3 V nm的大电场。使用此类器件,我们将少层半导体过渡金属二硫属化物(即双层至七层WSe₂)的带隙从1.6 V连续抑制到零。我们的结果表明对二维半导体的能带结构具有出色的控制水平。