IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2334-2344. doi: 10.1109/TCBB.2021.3086702. Epub 2022 Aug 8.
Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to ∼ 15% correlation and ∼ 33% mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker.
药物联合疗法一直是治疗癌症等复杂疾病的可行策略,因为它可以提高疗效,降低副作用。然而,即使使用高通量筛选,由于组合搜索空间庞大,实验验证所有具有协同作用的组合也是难以处理的。计算技术可以通过优先考虑有希望的候选药物来减少需要进行实验评估的组合数量。我们提出了 MatchMaker,它使用药物化学结构信息和细胞系的基因表达谱在深度学习框架中预测药物协同作用评分。我们的模型首次利用了迄今为止已知的最大的药物组合数据集 DrugComb。我们将 MatchMaker 的性能与最先进的模型进行了比较,并观察到其相关性提高了约 15%,均方误差 (MSE) 降低了约 33%,优于下一个最佳方法。我们研究了相对较难预测的细胞类型和药物对,并提出了新的候选药物对。MatchMaker 可以在 https://github.com/tastanlab/matchmaker 上构建和使用。